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ABSTRACT

Cumulative detection probability, cdp, is defined as probability of at least one
success in n trials. "Success" means thaf the (signal) stochastic process exceeds
a given threshold. Exact formulas or approximations for cdp are given in the

cases where the process being sampled in the trials is two-state Markov, Gaussian,

- "'step, ' and "'step-plus-jitter." In the two-state Markov case, taken largely from

others, k-success formulas are also given. Finding cdp is equivalent to finding the
distribution of the maximum of a sequence of random variables and to finding a

cumulative multivariate distribution.
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PREFACE

This is a report to the U. 8. Navy Underwater Sound Laboratory under Contract
Number N140(70024)74322B as part of an investigation of optimal search procedures
for surface ship sonar. The report is related to other reports on the project as
follows: A previous report, reference [a], presented stochastic process inferences
from empirical sonar data; these inferred processes underlie most of the theoretical
analysis in the present report. A forthcoming report will present results on optimal
search procedures; the analysis will depend heavily upon some of the methods dis-
cussed herein.

We wish to acknowledge the splendid direction and cooperaticn we have received
during this work from Mr. Carleton S. Walker of the System Planning Staff at
USNUSL, and through him, from Mr. Stanley A. Peterson, Associate Technical
Director for Systems Development. We further acknowledge the valuable assistance
of our colleague, Mr. David C. Bossard, who reviewed previous work on two-state
Markov processes and contributed Theorems II-1 and II-2 in Chapter II.

One of the authors, Professor Edward S. Boylan, has returned to Rutgers, The
State University, after participating in this investigation during the summer of
1964,
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SUMMARY

This report presents methods of computing cumulative detection probability (cdp),
i.e., the probability of at least one successful detection in n trials. This is equivalent
to the problem of computing the (cur.ulative) distribution of an n-dimensional random
variable, and to the problem of computing the distribution of the maximum of an
n-term sequence of random variables. In this summary we describe the stochastic
process model used and the nature of the results for various types of processes.

Stochastic Process Detection Model

We fix a continuous-parameter stochastic (signal) process X* (which associates
to time t a random variable X*) and a threshold function T*. These determine a
success-fallure process D*: Detection at tvne t means X* > T* or equivalently,
D}=1; no detection means x¥< 1% ie., Dt 0. EX* is sampled (observed) at
t1,..-sty, denote Xt =X, Tt;=Ti, and D, =D;. Define

p"{i=pi=Pr{Xi> T }
and

cdp=Py=Pr{X;>T; forsomei, 1<i<n}.

The problem is to compute Py, under various assumptions on X*orX. h Chapter I,
the model is developed in more detail and background of the problem is given.

Two-State Processes

Two-state Markov processes are investigated in Chapter II. Attention is confined
to the discrete-parameter success-failure process D (and briefly to D*), ignoring

v
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X* and X. It is assumed that D is Markovian. Most of the results are taken from
previous literature.

If D is stationary (i.e., independent of i, p;=p, and r;=r, the correlation
between Dj and D; ), then D is characterized by a single 2 x 2 transition matrix (Ii-1).
The transition probabilities are expressed in terins of p and r, and conversely.
Formula (II-2) gives the probability of exactly k successes in n trials (for k=0,1,2,...)
successes (P, if k=1), explicitly given in formulas (II-3) for k=1 and k=2. (Other
than in Chapter II, the report is restricted io k=1.) Also given is the probability of
at least two consecutive successes. These probabilities are presented graphically in
Figures II-1 through II-6 for various r, n, p, 2nd for k=1, 2.

If D is non-stationary, then the situation for k=1 is only slightly more complicated.
The transition probabilities are given by formulas (II-4) in terms of p; and r; which now
depend on i; Py, is given by (II-5).

When the number of observations n in a fixed interval (with D s.ationary) is made
to approach infinity, Po = lim, . Py is given by Theorem II-1. This represents
cdp for a continuously observed process; P« is graphed in Figure II-7.

For a sequence of independent trials, a generating function is given in Theorem
II--2 for the probability of exactly k successes. This is applied explicitly to
k=1,2,3, and k=0 is elementary. The formulas reduce to the binomial distribution
if p; is independent of i.

Gaussian Processes

If X* is Gaussian, then computation of Py is equivaleat to computation of a multi-
variate normal distribution. This is investigated in Chapter III --previous literature
is reviewed in Appendix A,

The principal method offered in this case is a convenient approximation based
on the assumption (used in Chapter II) that the discrete-parameter success-failure
process D is Markovian. Computation aids (constructed from bivariate normal
tables) are presented in Figures III-1 through III-4, and application is illustrated by
a tabulated example.

For the purpose of investigating the error in this approximation to Py,

Theorem HI-1 reduces the problem for n=3 to a one-dimensional integration, under
the assumption that (X4, X3, Xg3) is Markovian as well as Gaussian; formula (III-2)
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gives a corresponding result for n=5, reguiring bivariate rather than univariate
normal tabies for inputs to the integration. Theorem II-2 shows that under the
assumption that X is Markovian, the approximation to Pg is no less than the true
Pg, and an exact formula is given for the error. A bound on this error expression
is given by Theorem III-3.

Examples of the error in the approximation are presented in Table II-1,
primarily for n=3 or 5 and X Markovian. The errors in Py are of the order of
.01 or less. Under these conditions, the approximation appears to be very good,
and the errors do not appear to grow substantially as n increases from 3 to 5.
Neither stationarity in X nor constant T appear important for accuracy. However,
in a special case where X is not Markovian, the approximation is rated fair af best.

Step Process

A step process X* is one in which each realization is a step function, with the
jumps occurring in a Poisson process, and with the sampled values before and
after a jump being independent draws from a fixed distribution. For this type of
process, cdp is investigated in Chapter IV.

An exact formula for P, is given in Theorem IV-1 in the "unimodal?" . e,
wherein the threshold is non-increasing prior to a minimum point and is nou~
decreasing thereafter. The corollary gives a neat form of this formula for the
case where the observations are uniformly spaced. ,The latter formula is used
in Theorem IV-2 to pass to a limit to obtain P, --~this includes the constant-
threshold case of Theorem II-1 as a special case. The monotonic case of this
theorem was known previously.

Without the assumption of unimodal thresholds, convenient exact formulas
have not been found in closed form; however, an exact recursive procedure is
given for P,. The required number of multiplications is in the order of n2, and
thus the recursive procedure appears more efficient than a straightforward
approach, which would require over 2n-1 multiplications.

Step-Plus-Jitter Process

A step-plus-jitter process X* is the sum of a step process Z* and a jitter
process J¥; it is assumed that J* is independent of z* and of itself. The cdp
problem for X* of this type is investigated in Chapter V.
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The assumption of unimodali threshoids is no ionger heipfui. An exact {out
laborious) method of computing P, is given by recursive formulas in the same
vein as for the pure step process of Chapter IV.

An approximation to cdp is derived by means of an ""m-iddependent' process,
wherein each observation depends only on the outcomes of thé preceding m trials.
The parameters of the m-independent process are chosen to make it :esemble
the step-plus-jitter process.

This is applied to obtain an approximation to P,,, by means of a recursive
procedure (which requires much less computation than the exact procedure). The
accuracy of this approximation is illustrated for m=2 in Figures V-1, V-2, and
V-3. Applied to a pure step process, the approximation is very accurate. When
jitter is present (of a particular uniformly-distributed type), the approximation
appears to be good, providing there is a high probability of jumps between
observations; if this probability is not much higher than 1/3 (the lowest value
for which the approximation can be used with m=2), then the accuracy is not as
good. but it is still much better than an estimate based on an independence
assuraption.

Miscellaneous

Appendix A surveys various fundamentals relevant to stochastic processes.
Definitions and elementary properties are given for n-dime.:sional random
variables and their distributions, correlation, stochastic processes with emphasis
on Markov processes, and related concepts.

Previous publications on computing the multivariate Gaussian distribution are
reviewed in Appendix B. Surprisingly little appears to be known on the problem.
Formulas Jor Gaussian cdp are cited in some very special cases, which do not
appear to be of much practical interest for present purposes.

Appendix C presents some statements on correlation. Theorem C-1 gives the
autocorrelation of the sum of twc stochastic processes. Theorem C-2 gives some
basic facts on correlation between two two-state random variables. Theorem C-3
gives an inequality comparing the correlation between two Gaussian variables with
the correlation between the corresponding two success-failure variables obtained
by thresholding; the latter correlationis smaller. Theorem C-4 shows that the auto-
correlation of a step process equals that of the associated success-failure process
obtained by thresholding; both autocorrelations are exponential decay.

viii
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THEORY OF CUMULATIVE DETECTION PROBABILITY

CHAPTER I

INTRODUCTION

This report is addressed to the theoretical aspects of the problem of computing
cumulative detection probability, cdp, i.e., the probability of at least one success
in a sequence of detection trials. This problem has arisen in several ways during
an investigation of optimal sonar search procedures, conducted for tane /nderwater
Sound Laboratory. Common practice has been to treat successive detection trials
(e.g., pings) as being statistically independent. One quickly sees that when this
assumption is not satisfied (as is usually the case), then absolute estimates of cdp
can be greatly erroneous. Moreover, relative comparisons and selections of
optimal search parameters may also be substantially in error, although this may
not be as obvious. The purpose of the report is to provide theoretical tools which
can be used to avoid such erroneous assumptions of independence.

The substance of this report is largely mathematical in character, and will
be presented in the language of probability theory. To find this report usable, the
reader will need facility with elementary probability theory, and will need some
knowledge of stochastic process concepts. In particular, an understanding of the
elementary fundamentals of a Markov process (or Markov chain) will be necessary.
Appendix A surveys the most relevant fundamentals, with emphasis on Markov
processes, but, of course, it is not a substitute for a text.

it is useful ‘o bear in mind that the problem of computing cdp is equivalent to
the problem of computing the distribution of the maximum of a sequence of random
variables, and to the problem of computing a (cumulative) multivariate distribution.
These equivalences assist in bringing results from the literature to b=ar on the
cdp problem, and may in turn enable cdp research to contribute to these equivaient
problems. It is surprising how little is known, apparently, about computing the
multivariate normal distribution, for example.

In the remainder of this introduction we review the historical background of the
cdp problem, and relate the detection problem to a basic mathematical model:
thresholding on a stochastic process. Thereafter, problems of detection per se

i mmm‘%f&”;’ki‘m 2 §-q= agg'éury‘; K3
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arise only in abstraction. The four succeeding chapters are addressed to finding cdp
when the underlying processes are respectively two-state Markov, Gaussian, "step,"
and "step-plus-jitter." The appendices survey fundamentais of stochastic processes,
review the literature on multivariate normal distributions, and present some theorems
on correlation which are useful for cdr purposes.

Background of the Problem

The historical background of the problem of computing cdp stems from early work
on search theory, envisioning radar and son.r detection, notably various OEG reports,
and derived publications,by B. O. Koopman. We particularly cite references [b}, [c],
[d], [e], and [f]. In general, the problem of computing cdp has been one in which both
empirical knowledge and theoretical tools have been inadequate.

The first three of these references are addressed to general theory of search,
while reference [f] is an analysis of sonar data. Among other things, they develop
sweep widths as areas under lateral range curves. Each point on a lateral range
curve is a cdp, viz., the probability that a target passing at given lateral range will
be detected at some point during the pass or, alternatively, ai some point prior to
reaching closest approach. The possibility that fluctuations in conditions affecting
detection will occur during a pass is recognized, but is generally not treated explicitly
in references Db}, [c], [d], and [f]; where glimpses are accumulated, they are done on
the basis of glimpse-to-glimpse independence. In some cases, adjustment is made
via a curve-fitting parameter (in fitting a theoretical model to empirical data), the
adjustment having an effect of partially compensating for the error in the independence
assumption.

Refereunce [e] by Koopman is a theoretical treatment of cumulative success in a
sequence of correlated trials -- the basic model used is that success-failure as a two-
state process is a Markov chain (Koopman has also developed this model in greater
depth in reference [g], among other papers). Some of the results will be included
here for completeness. Moreover, a useful approximation ckin to this model is
presented in Chapter III.

More recent progress in theoretical tools has been offered by references fh]}
and [i]. Reference [h], Appendix B, presented a model for time fluctuations of
acoustics in sonar detection (presumed to be primarily propagation loss) known as
a "(A,0)-process." This was applied to cumulative detection and approach problems
in Appendix C of the same reference (these Appendices B and C were due to
J. D. Kettelle Jr.). For purposes of incorporating detection capability in cumulative
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fashion in simulation of undersea warfare, APL has used a random walk model described
in reference [i]. This is a special type of Markov chain in which one may transition only
to an adjacent state, from among a finite set of states. Evidently sea state is the
fluctuating parameter primarily envisioned. Suitably adapted to operational data, the
models of references [e], (], and [i] could be useful improvements over the assumption
of independent glimpses.

More recent progress has also been made in empirical knowledge of sequential
correlation effects in detection parameters, although the situation still leaves a great
deal to be desired. References [j] and [k] are careful analyses respectively of closely
spaced radar observations on an air target and closely spaced sonar propagation losses
in convergence-zone paths. Reference [a] is a report und:r the present project which
presents statistical analyses of BRASS Il sonar data, emphasizing sequential correlation
behavior in bottom loss and echo-to-reverberation ratio. Of the existing gaps in
empirical knowledge of the sonar aspects of the problem, human operator effects
appear to be by far the most important (recognized a decade ago in reference [f]).
However, knowledge of correlation behavior in propagation loss and background inter-
ference certainly has room for improvement; in particular, there are no known data
ir this vein on direct-path sonar propagation loss.

It is the aim of the present report to contribute theoretical tools to computation
of cdp. The methods developed are motivated largely by the models used to descrite
the empirical sonar data in reference [a]. In reference [a] it was inferred that under
certain circumstances, the signal process could be of a Gaussian nature and in other
circumstances "step-plus-jitter.! The step-plus-jitter process has as a special case
a step process, of which the (A, o )-process mentioned above is an example. From
this derives the interest in the types of processes treated in Chapters IO, IV, and V.
We note again that reference [a] does not include operator effects -~ when these are
included, the signal process is highly conjectural, and the simpler two-state Markov
processes considered in Chapter I may be as plausible as the others.

Stochastic Process Model for cdp

We suppose that a target is moving on an arbitrary track relative to a sensor
device being used to detect the target. The sensor operates in discrete glimpses.
The separation between glimpses could arise, for example, from the fact that the
sengor is an active sonar and must wait for sound travel between pings, or from
the sensor being either a sonar or a radar transmitting directionally in sweeps,
illuminating the target at most once each sweep. Passive sonar detection would lead
to a somewhat different model (glimpses would be overlapping time ""windows"), but
it is possible that results in terms of discrete glimpses as developed herein might
also be useful in passive problems.

L




The outcome of the ith glimpse is a random variable X;, regarded as signal and
often measured in decibels. This random variable may take on values from a
continuum of real numbers and possesses a probability distribution over these values.
The secuence of glimpses thus gives rise to a sequence (X;, Xy, ...) of random
variables, and this sequence is termed a "'stochastic process" with a "discrete
parameter." This term is defined more explicitly in Appendix A (and more generally
and abstractly in textbooks referenced there).

It is convenient to consider that,more generally, a glimpse is potentially
available to the sensor at any time and to denote by X’; the signal random variable
which would result from a glimpse at time t. This determines a stochastic
process X* with "continuous parameter"; the process associates with each non-
negative number t, a random variable X"{. In practice, X* will be sampled at
discrete times t3,...,t,, giving rise to a discrete-parameter process (X”{ R ,X"t‘n),
of the sort mentioned in the preceding paragraph, which we denote (X;,...,X,) for
brevity. In the body of the report, asterisks will distinguish continuous-parameter
terminology from discrete-parameter terminology -- we usually deal with the latter.
In the appendices, this distinction will not be made.

One usually thinks of the parameter of the signal process X* as being time
(usually denoted t), although it could just as well be distance. This matter does
not concern us in the present report. We note that in the stochastic process
inferences from empirical data in reference [a], one could not discern from the
data whether the processes were time~dependent or distance-dependent.

To relate the signal random variable to detection, we introduce a detection
threshold function T*. I X* is sampled (observed) at the point t, then detection
ensues if and only if the sampled value of X* exceeds T";;. This gives rise to a
new, two-state, process D* which is called the success-failure process:

. < 3
"y olfx";;.'rt
t 1 ifxt >1*

A success (detection) occurs whenever D’;= 1, and a failure occurs whenever D';=0.
We define p’;, the single-trial success (detection) probability (also called
unconditional success probability) for a trial (glimpse) at the point t, by

p’;=Pr{D’;=1}
_ * o ok
=Pr{X,>Ti}.

-4~




(The operator Pr is read, ‘'the probability of the event.")

Suppose again that the conﬁ*r‘mous-parameﬁer process X* is sampled at teeasntye
Then we denote T%., D* , and p by Tj, Dj, and p; respectively for i=1,...,n. We
now define P,;, the cumulative detection probability (abbreviated "cdp") in the n trials
by

Pp=Pr{D;j=1 forsomei, 1<i<n}

=Pr {X; > Tj for some i, 1 <i<n}.

Computing Pp is the problem to which this report is addressed. In two cases,
Theorems II-1 and IV-2, we will treat an extension of P, applying direct'y to the
continuous-parameter process X*; this cdp is, for a given interval [0, u],

P¥ =Pr{X}> T} forsomet, 0<t<u}

=1-Pr{ sup (Xi-T{)S0}.
0<tZu

There is a certain amount of arbitrariness in setting the detection threshold
function T* -- different thresholds might be used for different reference levels in
the signal process X*, and the reference levels need r.ot be constant. The most
convenient choice in this regard would be to incorporate into T* the deterministic
(i.e., systematic) variations during an encounter, while X* reflects the random
variations about a constant mean, i.e., the mean of the random variable X* is the
same for all t. In this case, it is plausible that the process X* will be "'stationary"
in the sense defined in Appendix A, in addition to having a stationary mean.

As an example of variability in thresholds, suppose the target is passing on a
straight track with a stated closest approach to the sensor. During the sequence
of glimpses, the range will decrease monotonically, will reach a minimum, and
then will increase monotonically thereafter. Suppose that parameters other than
range (e.g., environmental and operator effects) which affect detection have the
same statistical behavior on each glimpse, on each pair of consecutive glimpses, etc.

' —“Mﬁi‘lﬁfn‘




These effects other than range can be conveniently reflected in a staticnary stochastic
process X" while the deterministic effects of range are reflected in the detection
threshold T*, decreasing with range. This example has a particular type of
threshold variatlon which is useful in Chapter IV: the deteciion function is referred
to as "unimodal" (although it is actually the single-trial success probability p"t‘ which
increases to a maximum and decreases thereafter). Another example of systematic
effect on detection, for some detection systems, is the effect of target aspect
(plausibly again unimodal).

Throughout the body of the report, we fix a continuous-parameter stochastic
process X*, a threshold function Tr, a single-trial success probability function p*,
and the associated two-state success-failure process D¥, all as defined in general
terms above. In Chapters III, IV, and V, the process X* is specialized to be
respectively Gaussian, ''step,' and "step-plus-jitter, " to be defined later.

Chapter II does not deal with X* explicitly, but assumes that the two-state process n*
is Markovian. I all cases, X* is sampled (i.e., observed or trials are made) at
t1,...,ty, giving rise to the discrete-parameter quantities X;, Ty, Dy, and pj, for
i=1,...,n. The central problem is to find the corresponding Fy,.

We note two conventions: If qis a probability, then 1 -q will be denoted by q.
The end of a proof is marked: #####




CHAPTER 1II

TWO-STATE MARKOV_PROCESSES

In this chapter we assume that D*, the success-failure process being sampled, is
a two-state Markov process, and we present formulas for cdp in this case. In practice,
the two-state nature of the process would presumably arise by thresholding on a multi-
state process X*, as described in Chapter I. However, the source of the two-state
process does not concern us in this chapter.

A two-state Markov process is possibly the simplest type of non-independent
process, for cdp purposes. For this reason, it will be a convenient type of an
assumption in practical applications. Moreover, the principal technique given in
Chapter I for computing cdp in Gaussian processes, will be an approximation which
is closely related to cdp in two-state Markov processes.

In this chapter, we will be able to give formulas for the probability of at least k
successes, and exactly k successes, in n trials. Elsewhere in the report, we are
restricted to k=1.

The first section, which contains most of ihe discussion, is addressed to the
stationary case, wherein the single-trial probability of success is constant. The
non-stationary case is discussed briefly in the second section. Limiting values of
cdp, as the number of trials in a given interval becomes infinite, are given in the
third section. The final section reviews independent processes which may be
regarded as a special case of Markov processes.

Most of the results of this chapter are taken from Koopman, reference [e],

and Thiess, reference {I]. Theorems II-1 and II-2 were supplied by our colleague,
D. C. Bossard.

Stationary Two-State Markov Processes

In this section we investigate the simplest type of two-state Markov process, in
which p, the single-trial probability of success, does not change from trial to trial.
Correlation, between successive trials also does not change. This is a stationary
process. (See Appendix A for delinitions of these terms. )

-7~




The process in this case i3 characterized by a matrix of four transition prob-
abilities given as follows, each entry being the probability that if the jth trial
results in the state of the row heading, then the j+ 18t trial results in the column
heading:

Success Failure
Success a a
- (I-1)
Tailure b b

The assumption that the process is Markovian means simply, by definition, that
these probabilities do not depend on outcomes of trials prior to the jtb trial. The
assumption of stationarity means simply that these probabilities are independent of j.
Processes of this type, as well as non-stationary cases, are explored in detail by
Koopman in references [e] and [g]. Additional discussion of Markov processes is
given in Appendix A.

Let r be the correlation coefficient (see Appendix A and Theorem C-2 of
Appendix C) between successive trials, and p be the probability that 4 random
trial results in success. We then have (reference [e]):

r=a->b
a=p+pr
b=p-pr.

We thus see that p and r suffice to describe the situation; note, however, that we
must have r > -p/p and r 2 -p/p, since a and b are probabilities. The correlation
coefficient between trials h units apart is rh.

Let Ry () be the probability of exactly k successes in n trials. Let P,(K) be
the probability of at least k successes in n trials --we are primarily mterested
in k=1,and k=1 will be ‘be understood if the superscript is omitted. Then Rn
the probability of n consecutive failures:

- n-1

Rn(o) pb

-8~




For k#0, Rn(k) is given by (see Thieas, reference [11):

-1 I
r &) - x:__;_:k @ a5 Ty @)

where the vm(k) 's are found from

bx+p (1 -x) abx? g 2
X - A X + —— = v II..Z)
1-bx ( l-bx) m=k ;(R)\XQ\\ (

~

.
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The left member as a function of x is a ""generating function" for the probabiliﬁt}s\
R, (k). Koopman gives an alternative generating function formulation as formula (20),
Section 5, of reference [e]. Formula (II-2) is slightly more general than the
corresponding expression in reference [1], since it allows for a probability of p that

the first event will be a success rather than requiring that the first event be a failure. .

We quote the results for k=0 and k= 1:

Rn(o) = 5511"’1

R,(1)=pab® 2+ (n-2)pabb®3 +pbbD2

From these we can calculate the P,(1) and Pn(z):

p,()=1-R (0

(O-3)

P2 =1 - RO - R (1),

We can also express these probabilities in terms of r:

s




R, =5 G+pr-!

Ry =pp (1-1) G+pr)?-3 (2r +np (1 -1)).

If r=0, then Rn(k) reduces to the familiar binomial form (see last section).

Reference [1] also gives the probability Sn(z) of receiving two consecutive
successes under the same conditions as above:

n-1 - rh-1
Sn(2)=pa+§ (A - § (€ +b1)§ -tg (£ +b))’
where
- % b2+ 4ab)
= —;— b2+ 4;b).

Figures II-1 (p=0.3), II-2 {p=0.5) and I-3 (p=0. 8) give the probabilities P (1)
and P,(2) for n=2, 3, 4, and 5. In Figure II-1, S4(2) is shown by a dashed line; o
course, Sg(2) = P2(2) ‘

We note from Figure II-1 that the effect of correlatton increases with the number
of trials (as expected) and that it increases as the unconditional probability, p,
decreases. The effect on the probability P,(1) of at least one success in 4 trials is
opposite to the effect on P4(2) and 54(2), where at least two and at least two
successive detections are respectively required; the former probability ‘decreases
as r increases, while the latter probabilities generally increase, reaching a
maximum for r < 1 in some cases.

The effect of correlation on Py, = Pn(l) is shown in a different form in
Figures II-4, II-5, and II-6. For various values of p, the number of trials required
to yield various levels of P, versus the correlation coefficient r is plotted. One
notes that the number of trials required i.icreases monotonically with r, the increase
becoming very rapid as r approaches unity.

-10-
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Non-Stationary Two-State Markov Processes

In the non-stationary case, the quantities a, b, p, and r are permitted to change
from trial to trial, and are subscripted by the trial number accordingly. One

generalization is that the correlation coefficien
(G +h)tB trial is
j+h-1
i P

where rj is the correlation between the ith and

t between the jth trial and the

(i +1)8t trial,

The transition probabilities on the jth trial are given by (page 5, reference [e]):

%=pj+rjpj_1 ,\

and

b:

37 P

i

The cdp is given by

- n _
= 1)=1 - :
Py=P(M)=1-p (L, by.

H
pj_l pj -1
@-4)
ke
pj - 1 -——_::-— .
Pj-1Pj1
(I-5)

We shall make use of formula (II-5) in devising an approximation to cdp in a

Gaussian process in Chapter III.

Reference [e] gives difference equations for the probability of exactly k successes

in n trials in this non-stationary case.

-17-
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Continuous-Parameter Two-State Markov Processes

In practice we customarily achieve a sequence of triais, described previousiy as
a two-state Markov process, by sequentially sampling a continuoug process. (The
discrete-parameter process is usually called a Markov chain.) We now state some
elementary facts regarding the continuous version of the process, confining attention
to the stationary case. For present purposes, we define a cortinuous-parameter
two-state process D to be gtationary Markov if every discrete-parzineter process
obtained by sampling D at uniform points is stationary Markov.

It has been noted that the correlation between trials separated by h is rh,
where r is the correlation between successive trials. The corresponding statement
in a continuous-parameter process is that the autocorrelation function associated
with the process is of the fosm e~A B, for some fixed A > 0.

Suppose that D is a continuous stationary two-state Markov process, and p is the
ur:conditional probability of success. Let A > 0 be as above. Suppose that D is
sampled at the n+1 points, it/n for i=0,...,n, uniformly spaced in the interval
[0,t]. Then the limiting value of Py is given by the following theorem:

Theorem II-1. Under the above conditions,

P,=lim P =1-pe Pt

n—p

Proof. From formula (II-3) and the given autocorrelation function, we have

1-Py=p[p +pe"ht/n]n‘1.

The proof is completed by letting n approach infinity. *

*  Throughout the report, the end of a proof will be denoted by: #####.

-18-
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Theorem II-1 is a special case of a more general result given in Chapter IV as
Theorem IV-2,

A comparison of this limiting case, i.e., when the number of trials approaches
infinity, with cases for a finite number of trials is illustrated in Figure I-7. One
notes that in general, with 10 or more trials, cdp is not much smaller than the
limiting cdp (n=« ), and hence this formula for the limiting cdp may be a useful
approximation when the number of trials is fairly large.

A different type of limiting situation is treated by Koopman in reference [g]:
the sequence of trial sequences is not contained in a fixed interval. Under various
conditions on limits, generating functions and explicit formulas are developed for
the probability of exactly k successes in the limiting case.

Independent Processes

We conclude this chapter with a brief discussion of independent processes
(which may be regarded as a special type of Markov process).

A stochastic process X is independent if X; and Xj are independent random
variables whenever i#j. Since there are no correlation problems in independent
processes, there is no loss of generality, for cdp purposes, in confining attention
to two-state success-failure versions of independent processes, i.e., the D process
in the notation of Chapter I. A two-state Markov process specializes to one of this
type if a5 = bJ in formulas (II-4).

Let p; be the unconditional probability of success in the ith trial of an

independent process, fori=1,...,n. Let Pn(k) be the probability of at least

k successes in the n trials, and let Rn(k) be the probability of exactly k successes.
Then

1-p, ()= i§1 (1-p) = R,(0), (11-6)

pri=po fori=1,...,n, then

1-P,W=q-p)" (@7
Ry(®) =p k (1-p k() ax-8)
and ¢
n k-1
p, (k) - Z Ry0)=1- Z, R, 0). (I-9)
-19-~
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EFFECT OF NUMBER OF TR

8. 1LS ON

Assumptions:

Success~failure process is stationary
Markov

p = unconditional probability of
success (constant)

n = number of trials in interva! [o,t]
P, = probability of at least one success
in n trials
p=0.3 e-}‘h = autocorrelation between triais
0 L A 1 . ; separated by h
0 .2 .4 .6 8 1.0
at

n
1.0, n=oo n=>5 ‘;n=2
0.8
0.6¢
0.4%
0.2} 0.2}
p=0.5 p=0.8
0 1 [] 1 Iy 0 o 3 4 | J
0 .2 .4 .6 8 1.0 0 2 .4 .6 .8 1.0
at at

-20-

T S o T 5 A A P -
— 5 e . emee




Formulag (II-6) through (I-9) are well-known; formulas (II-8) and (II-9) are tabulated
in reference [m]. Formulas (II-6) and (II-7) are often applied erroneously (when the
process is not independent), which is the motivation for this report.

The following theorem provides 2 means of finding Rn(k) in general:

Theorem I-2. Withp,,...,p, and Ry, (K) defined as above, we have

k

B‘l’l.(k);-“-;l 'E'An(pl""’pn’ t)

=1 for k=0,...,n,

where

n
An (pl’ sve 9pns t) = i-gl (1 _pl t);

A, may be thought of as a generating function for Rn(k).

Proof. We have the following recursive equation, writing R,*%/ as R, (k) (P Py)

1 1 1 -1 ~
Rn( ) (pl" .. apn) - E" i‘:-ll Pi Rngi ) (pl’ coe ’pi-l’ pi+1’ R ’pn)'

It is also easily shown that

k ok k n k-1
-1)* 9 _ (-1) o .
——_k! —tk An(pl’ e e ,pn, t) - k! i=1 a t -1 An_l(pl, es e ,pi_l,pi+1. PO ,pn, t) ("pi)

9

n_l(p11 e 9pi_19pi+1’ s e ’pn’t)!
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* . el

so that

satisfies the same recursive equation as Ry(k).,

Now, since

O . oop )= T (LD =AnWseersPrs t)
By @yse e aPp) = M (A -py) = An gy e o 0Py,

and

Rn(l)(pI’ s ’pn) = _z

= ('1) [—aa_t An(pl""’pn’ t)] =1

the theorem follows by induction on k+n.
#HitHHE

We illustrate Theorem II-2 by application to k=1, 2, 3. We have

log Ap=Z log (1 -P; t)

-22-
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92A, 9 A, Py 2

5 == z ~A, Z *—”EL“-?V
ot 5t 1-pt (1-p;t)2
834,  92%2A, _ dh, p;2 2p,3
B=-—0 3 -2 > 7= ApZ 5.
9t 9t 1-p, ¢ 8t  (1-p,t (1-p, t)

Therefore, by Theorem II-2, letting w, = pi/ﬁi fori=1,...,n,

0 _ -
Rn( )__ Hpi
Rn(l)= nﬁi . zwi
Rn(z) =1 51'. ) {(2 wi)Z - Ewiz}

Rn(3)= ‘};‘Hﬁi' {3(Zw)) (zwiz)-(zwi)3+zzwi3} .

These suffice to give Pn(k) for k=1,...,4.
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CHAPTER _III

GAUSSIAN PROCESSES

In this chapter we assume that the underlying continuous-parameter process X* is
Gaussian. By this is meant simply that the joint distribution of any sequence of observa-
tion of random variables (Xy,...,X; ) is multivariate normal (see Appendix A).

In view of the definition of a Gaussian process, the problem of computing cdp,

Pp=1-Pr{X; S Ty,...,X; < Ty},

is equivalent to evaluating the multivariate normal distribution. For this reason, we have
included in Appendix B,a survey of the literature on computing this distribution.

The main method of this chapter is a convenient approximation described in the first
section, with computation aids in Figures III-1 through Ill-4. The computation method is
illustrated by an example. The approximation is based on the assumption that the success-
failure process D is Markovian, The error introduc2d by this assumption is investigated
in the second section; insofar as it has been tested (for n=3 and n=5 trials -- in Table
II-1), the approximation is very accurate, providing the discrete-parameter observation
process X is Markovian (also true if X* is Markovian). The approximation is less
accurate in some special cases where X is not Markovian,

Approximation Method

Our principal method for computing cdp, P, in a Gaussian process will be an
approximation method presented in this section, The method is based on the assumption
that the success-failure process D is Markovian, It is intended that this approximation
be primarily used when X is Markovian -- it docs not follow that D is Markovian (e. g.
see Rosenblatt, reference [n] ), which is the source of error in the approximation,
Errors in B will be investigated in the next section.

..25..




Under the assumption that D is Markovian, -I3n is given by formula (I1-5) of Chapter
.

w— — n _
=Py BB

where Ei is the probability that the ith trial fails, given failure on the (i-l)St trial; as
before, p; is the probability of success on the jth trial,

Define z; ;_; to be the probability that both the it? and (i-1)® trials fail, for
i=2,...,n. Then by definition of conditional probability (or by applying formula (II-4)
of Chapter II and Theorem C-2(ii) of Appendix C),

§n = n ﬁi .n .:I.J_]::-.._l__
i=1 1= pl pi"l
@i-1)
n_ n
=5 AR Y
where
N &
‘i,i-1 3. B
P Py
.26_
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Note that the product of the ¥ 's represents a muitiplicative correction to the value
of P which would be obtained in ghe presence of independent trials. For this reason,
we will refer to Yi,i-1 28 2 correction factor; the dauble subscript refers to the fact
that it depends on Behavior in both the ith and (i-1)8¢ trials.

The Gaussian nature of X has nothing to do with formula (IlI-1). However, assuming,
as we do, that X is Gaussian, Z; ;-1 is conveniently cbtained from the bivariate normal
tables, reference [p]. Using these tables, curves have been prepared for computational
convenience, and presented as Figures III-1 through III-4, giving log 07 The

inputs to these curves pertain to the multi-state process X rather than the’ %wo-state
process D:

(1) Thresholds Ti and Ti—l measured ir standard deviations from the means of
Xi and Xi_1 . The thresholds are separately used to determine p; and Pj-1-

(2) The correlation p between Xi and X . This is not the same as the

correlation r;_,(no % needed)between D, and }) j-1 » a8 shown by Theorem C-3
of Appendix C.

Separate curves have been prepared for Pi j-1= - 3, .5, .7, .9 . Atthe end points

mgm Yi,i-l =0 when pl’l_1 =0

and

} when p,

108, %,4-1 = ~l0Bj, max {B,, i,i-1

Pia

Linear interpolation of 1°g10 7] with respect to Pi,i-1 is quite accurate. The figures
are symmetric in T ard T -1

Example; We give an example to illustrate the procedure. Let X* be a stationary
Markov (Gaussian) process with common mean zero, common standard deviation of 5 db,
and autocorrelation between any X} and X:Z
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i.e., correlation is 0.5 between variables one time unit apart. Let X* be sampled at
times t1 =0, t2 =2, t3 = 3, and t‘;‘: 5, i.e., four non-uniformly spaced trials. The

process (Xy,...,Xy) = (X{ ,...,X{ ) i8 aiso Markovian, but is not stationary since
1 9 =W Aty
- - = 2 —
Poq --oz(t2 tl) 5%#.5 P3q -

(It can be shown that the corresponding (Dl’ cee, D 4) is not Markovien, which is what

makes the method only approximate.) Let the detection thresholds (in db) be 6.5, 2.5,
0, and 4. 0 respectively.

The following table shows in tabular form all the steps necessary to calculate Bn
in this situation:

Trial index i .1 .2 I . .4
Trial time ti 0 2 3 5
Threshold 1.3 .5 .0 .8

T(in o's from mean)

Single-trial failure

probability 5i . 9032 .6915 .5000 . 7881
Correlation P i-1 .25 .50 .25
log 10 74,i-1 .011 .083 .030
log;q Py . 956-1. .840-1 .699-1 .897-1

Then logm f‘n is the sum of the bottom two rows, i.e.
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log, '13n = 3,516-4 = ,516-1

P =.328.

If one assumed the trials were independent, then one weauld obtain

log,, 5n = ,392-1

Pn =.247 .

Error Estimates

In this section we investigate the error in the approximation method of the pre-
ceding section. The error is introduced by the assumption that the success-failure
process D is Markovian, For this purpose we assume that the discrete-parameter
Gaussian process X is Markovian, When this condition is not satisiied, no information
has been obtained on error estimates, except for the very special case of formula (A-4)
of Appendix A, Even in the Markov case our error estimates are restricted primarily
to the case where n=3 or 5 trials, General statements relevant to these error estimates
are embodied in the three theorems below. At the conclusion of the theorems numerical
examples are given in Table III-1,

Theorem II-1, Let (X, X,, X 3) be a Gaussian Markov process and assume py =0
and 0;=1 fori=1,2,3. Iet Py; for i # j be the value of the correlation between the random
varlabl\,s X, and Xj and assu e that 0 < pyj < 1. Then

- < < < .
=Pr{X; ST, and X, =T, and X, S 'r3}

. T

2 - Uug,
=J @(,..__..__1) @-———ar____)dﬂu).
- 1-“’21 1- pgz

-33-




where & is the standard normal distribution function (see Appendix A).

Duanf Té¢ ann ha cshaum foaa v Y i i
Drocf. It can be shown {see reference [o]), that the conditional distribution of X,

given that Xi =u,is simply normal with mean up; and variance 1 -~ 5. . By hypothesi]s
(Xl, Xz, X3) is Gaussian Markov, and therefore X1 and X3 will be ﬂndependent, given
a particular value for Xz. Thus

5
P.=f Pr{X ST, fori=1,3| X_=u’ ..~
37 4 i 2
Ty
= s = . S =
-{o Pr{ X, T1|X2 u} - Pr{X, < T, l X, =u} de )
T

2 T, - T, -
- [ e(A—t2l) 53082450, MM

~P3g

The same method can be used in more general fashion, e.g, if (Xl, cee ,Xs) is
Gaussian Markov, then

T,

_ 3
- < <i<5) = < < -
B, = Pr{X ST for 15155} _{o Pr{X € T, and X, '1'2|x3 u}
(11-2)
‘Pr{X,ST, andX ST, | Xxg=u}deq.

Since the conditional distributions in the integrand are bivariate normal, one has a
more difficult time in carrying out the numerical integration; however the bivariate
normal distribution is tabulated in reference [p] .

Theorem III-2. Let (X,, X,, Xs), [T 0?2 , p., and P_be as in Theorem III-1,
{ip og i’ i Ui

Let f’3 be the approximate ¢ tained by assuming the success-failure process to
be Markovian (formula IlI-1), Then the error in cdp is
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- T, ~up T, -4 2 T, - vp
P -p = f f & (dolly [ g (B2 - §(L—r32)]d &) (V)
3 " *3 @(T)_w _,o Ji-2 ¥1- y1-
2 1= 1 ‘?éz 1 p232 @I-3)
and
n >
B 2R, .

Proof. Under the Markov assumption on (Dl’ D the success~failure process,

D,),

1-P3=Pr{D1=D2=D3=0}
=Pr{D;=0 | Dy=0} Pr{Dy=0]| Dy=0} Pr{D,=0}

- < < <r1 < <
=Pr{X, S T,} Pr{X, < T, | X, STy} Pr{X; ST, | X, T,)

T T,
2 T -upy, 1 2 T3 -upg,
'--<I>(T2) [[ (=—=="do@) 3 I [ ] &(=—===)d%@) ]
-0 4 - (T.) -0 1/ - ‘I’(T)
1 p§.1 2 1 p232
1 27 o (L2l T dé@) dé
L L P e e, oo

Using Theorem III-1, we have
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T,

2 T. ~ug Tqa ~up
_p = 121 332
1-P { @(‘[__,___2_“) @(‘/_‘__:__é__)dé(u)
Y i-p yF 1-p
21 32
(1li-5)
T, T
2 2 T, ~up T, —up
1 1 21 3 32
T em—— f f Q(,r__) <I>(-—--—--)d<l'(u) d‘f’(V) .

Equation (III-3) follows from (III-4) and (II-5\. It remains to show that P, > A
we denote the factor in square bracl-ets in the right-hand side of {III-3) by :ii(u,v) ,
then clearly B(u,v) = -B(v,u) > 0 for v > u, Since the product measure of & itself is
symmetric about the lire v=u,

T, T
p S S Ty ~upy, T, = Vpyy
P - = oo ) ) ( m——T ) ] & ) . -
s = Py 30 I _{o [o(frz__) ({;__2_ 1Bu,v)d® @) d&(v). (IlI-6)

“Poy

But this integraiion is over the region where v 2 u,and in this case both factors in the
integrand of formula (III-6) are non-nsgative. Hence P3 2 P3. HHH

We uow turn to the problem of obtaining a: upper bound on the error 133 - P3
in Theorem III-2,

Theorem II1-3. Assume the hypothesis and notation of Theorem III-2 and also
that th= detection thresholds are constant, i.e,. Ti =T,. Then

2

- T 1-p 1-p

P -p < L exp[- 2 (—=2L + — 8y for T2 0

3 3 f1-024 1-02 2 "1+p 1+p °
™1-py, Pgo 21 32

and

P, -P S #(T,) forT,<0.
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Proof. LetT 2 0. Then #(T) 24, and hence 1/&(T,) <2. Whenv 2 u we obtain,

by the Mean Value Theorem,

T "U.p-o T ‘Vp- - ._2
& (-2 211)_4’(0 211)= vu2 ex/2. ; ’
1-'pij "1~-pij ‘Vl--pij v am ;
where x is some number such that
T = Vp;; T ~ Up;;
2 << 2 13

‘Vl-p.z. ‘Vrl-pg.

1)

If Sy S T, , then the smallest value that

L ~Toryy  Tolopyy)

1]

X mAy assume is

Tov 1 -pﬂ

1 1--pi2j l-p'izj .

-

Now using equation (III-6) ir the proof of Theorem I'" -2, we see that for T, 2o,

D < 1 T v (v-u\z Tz 1-py; 1-pgg
- S= ] ] ; exp[- (2L + —Eydewdzm
3 3 27T e ..,,1[1_ 9 1/1_ 2 2 1+p21 1+p32
Po1’ * " P3y
2 T
1 T 1-p 1-p o V
S = expl- -;'- 1-:*—2-1-+ T+__3_2.,] I vwidemdew
2ﬂ'1-p241-p2 P21 Pz~
21 32
T 1-p 1-
S 1 7 O e vt R
- -2 : P
w1 1 pzl‘ll P30 21 32
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For the cagss Ty < 0, we use equation (III-3) of Theorem II-2, Then,

T up T “up TO.'V.D:;
By - Py gy L0100 o (=2 &m0 - 0 () Ja @ ad0)

(r-———
1-p% Y 1-p% 11- o3

< 1 To (T, o BB
-E(T)'f.w J 0deu)de(v)=3(T).

#HH#

‘ In order to test the accuracy of the approximation, the true P, and approximate
P, were calculated and are displiiyed in Table IlI-1, for n=3 or 6, and for various
values of Py and Ty, The primary methods of calculating P, were Theorem III-1
and formula fn} -2), in cases where the Gaussian process X=(X1. .«+,X,) is Markovian,
An additional method for X Markovian is mentioned in the notes. Some special cases
where X is not Markovian were tested by use of formula (B-4) of Appendix B.

In most cases in Tahlo III-1, X is stationary, while in some cases it is not, as
noted. In most cases the threshold sequence i8 constant, but not in others.

For the cases where X is Markovian, the errors in P, are in the order of . 01.
The errors are greater for P, close to .5 than for P, close to 1.0, as might be
expected. The errors for n=56 are not substantially different from those for n=3.
Note particularly example (11), which is both non-stationary and has non-constant
thresholds -~ the error is . 003, which is very small considering that P, =. 562.

Note that the assumed correlations are in the range .4 to . 7. In general, one
expects less error for very high correlation or very low (absolute) correlation,
since the approximation is perfect if (a) p =0 throughout X or (b) p =1 throughout X

and the single~trial success probabilities are unimodal (i.e., non-decreasing prior
to some point and non-increasing thereafter),

For the last three cases of Table III-1, X 18 not Markovian and the errors are
somewhat higher, . 068 for n=6 and n=10, and the approximation could not be rated
better than fair. Nevertheless, the approximation is still a better estimate than
would be obtained by assuming independence (being lower than the latter).

We conclude that the approximation is very good for at least five trials in case X
is Gaussian Markov. This would be implied if X* is Gaussian Markov, but not
conversely. Stationarity and constant thresholds do not appear imporfant, For X
not Markovian, it is plausible that the approximation will be fair in many cases of
interest -- certainly examples are at hand where the error is very large, especially
as a percentage of 1 - Py,.
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TABLE_III-1

EXAMPLES OF ERROR IN APPROXIMATING GAUSSIAN cdp

Thresholds

. i i s 3 d
No. of trials  Correlations (in ¢'s from mean) - True cdp Approximation cdp Error
n Pi,i-1 Ty Fa By BBy
- Markov Gaussian Process -
(1) 5 .6 1.0 .443 .453 .010
2 5 .6 .5 .687 . 696 .009
(3) 5 4 1.0 .501 . 505 . 004
4 3 1/V2 0 .708 721 .013
(5) 3 1/VE 0 784 .790 .006
(6) 3 1/V2 vZ .153 £ ,013 . 164 .011
(m 3 1NZ Wz .416 ¥ . 020 .425 . 009
(8) 3 1/V5 Wz .483 £ 014 .486 .003
(9 3 1/V5 -1/V5 .911 % 006 .912 . 001
(100 3 INE -2/V 7 .972 1,003 .972 . 000
(1) 3 .6,.36 (1.0,0,1.0) . 562 .565 . 003
(120 3 o (-4.0,.4) .611 .61 .003
(13) 3 N (-.2,0,+.4) .703 .709 . 006
- Gaussian Process Not Markov -
(14 2 _1 0 .667 .667 o
(1 5 JPu_,. 41 0 .833 .901 . 068
e 10 iy =7 0 .919 .987 . 068
Notes

(1) In examples (4) through (11), B, was computed by Theorem III-1 -- the En in (6)
through (10) indicates the computed upper and lower Riemann sums in performing
the numerical integration. In examples (1), (2), and (3), formula (IIF2)was used.

In (12) ar 4 13), a more tedious calculation of B, was performed: the three

Gaussian distributious were each grouped into fourteen states and the two 14 x 14
transition matrices were multiplied. In examples (14), (15), and (16), formula
(B-4)of Appendix B was used for R,.

(2) In all cases, the appro

for f},

ximation method using Figures III-1 through ITI-4 was used

(3) In example (11), (X;.Xg, Xg) is stationary, since the two correlations are not equal.
In (14), (15), and (16), X is again not stationary. In all other cases, X is stationary.

(4) The thresholds are not constant in examples (11), (12), and (13), but are constant

elsewhere.
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CHAPTER 1V

STEP PROCESSES

In this chapter the underlying continuous-parameter stochastic process X* is
assumed to be a step process, defined in the first section. tuvitively, one may
think of the sample functions of the step process as being step-functions, i.e.,
constant over a period of time until a jump occurs. After the jump occurs, a new
value for the process is chosen which is independenti of the values before the jump.
The occurrence of jumps is a Poisson process. Pure step processes of this form
are probably too idealized to be realized in physical detection processes -~ their

principal usefulness is as a first approximation to the step-plus-jitter processes
considered in Chapter V.

In Theorems IV-1 and IV-2, it is agssumed that the threshold function is
"unimodal." Theorem IV-1 then gives a formula for cdp when the continuous-
parameter process is sampled discretely. The corollary to this thecrem gives
a neater form of the cdp formula, in the case where tL2 time between observations
is constant. Theorem IV-2 passes the result of Theorem IV-1 to a limiting case,
where the step process is observed continuously.

The final section deals with an arbitrary threshold function. In this case
convenient exact formulas for cdp are not available. However, a recursive
proceJure has been devised which is suitable when the number of observations
is not large. The number of multiplications required to compute cdp for a
sequence of n observations using the recursive reiations is of the order of n2,

Definitions

The definition of a step process requires the specification of two auxiliary
processes Y and N. The process Y consists of a sequence of independent,
identically-distributed random variables Y fori=0,1,2,.... The comz.on

distribution function of the random variables Yj is called the jocation-after-jump
distribution, and will be denoted by K. The process N, csalled the sggregate-jump
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process, is specified to be a Poisson™ process with intensity A (see reference [q] for
an excellent elementary discussion of this process): N; is the number of jumps which
occur from time zero up to and including time t. The numbers of jumps occurring

in disjoint intervals are independent. Moreover, the probability of any number of
jumps occurring in a given interval depends only upon the length of the interval and
not upon its location in time. The expected number of jumps in time t is A t and

PI‘{ Nt=m} =e

- m
At-Q-‘—Q—— for m=0,1,....
m!

In particular, the probability of no jump in any interval of length s is e A8

The step process, X*, is now defined by the following composition:

*
=Y fers > 0.
Xy N; -

\

When the location-after-jump distribution is normal with standard deviation o,
X* has been referred to as a "(A,0 )-process" in Appendix B (originated by J. D.
Kettelle Jr. ) of reference ‘h].

Clearly, X* simply describes a special type of sampling scheme where a new
sample is drawn from the distributica K whenever a jump occurs (as indicated by the
process N). Each new sample is independent of those previously drawn.

A threshold function is said to be unimodal if it is non-increasing prior to
some parameter value (not necessarily unique) at which the threshold is minimal
and therefore non-decreasing. Actually, the term'unimodal'would be more aptly
applied to the corresponding single-trial success probabilities, Py since these
rise to a maximum and are non-increasing thereafter.

It is shown in Theorem C-4 of Appendix C that the autocorrelation between
observations separated by s in 3 step process is e 8, We note, without proof,
that a step-process is Markovian -- we do not use this fact per se.

* It snould be noted that in the physical process of reference {a], which provides
a principal motivation for considering step processes, the occurrence of jumps
fits much better to an Erlang process of order two or three than to a-Poisson
process (Erlang of order one).

.~
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Unimodal Threshold Theorems

In this section, we assume the threshold function T* is unimodal. Theorem IV-1
will give the formula for cdp= P, for the case where the process X* is observed at
n arbitrary discrete points in time, and Theorem IV-2 will extend this result to the
continuous-parameter case. We repeat the convention made in Chapter I that the
symbols X, T, and p denote respectively the process, threshold function, and singlz-
trial success function obtained by sampling the continuous-parameter process X * at
discrete points in time t;,...,t,. Note that if T* is unimodal, then T will also be
unimodal.

Theorem IV-1. Let X be the discrete parameter process obtained by observing
X* at times t1,...,ty, and B, (fori=2,3,...,n) be the probability of at least one
jump in an interval of length t; -t;_;. Thus

By=1- e~A(ti-ti-1)

Let ¢ be an observation corresponding to a minimum threshold T,. Then P, is
given by *

c-1 n
Pn =1-(1 -pc) igl (1 —Bi'l"l pi) i=g+1 (1 -Bi pi)' (N-l)

Proof. We make use of the following elementary fact about conditional prob-
abilities: Let A, B, and C be arbitrary events and let C be the complementary
event, "not C." Suppose, in addition, that B is independent of both C and C. Then

pr{A|B} =F.{A|BNc} Pr{C} +Pr{A]BNC} Pr{C}.

When the upper limit of the symbol II is less than the lower limit, we follow
the convention that the product is then equal to one.
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Let F; correspond to the event X; < Ty, and L; correspond to the event "at least
one jump occurs between t;_; and t;." The probability Py may then be written as

n
P_=1 d;, Iv-2
n i=1 i ( )

where

d; = Pr{F;j|F; NFy... NF;;} fori>1
d]'= Pr{Fl} =§1.

Noting that L; is independent of ¥, M...MN F;_y, We may use the above remnark
and write

dg = Pr{F;|F,NFyN ... N F_; ML} Pr{L;)

(IV-3)
+Pr{Fy| Py NFaN ... NF;_ ML} Pr{L;}.
Now, if i < ¢, then
= B . B
di=p; By + —— B, = —— (1-B;p;_)). (IV-4)
Pi-1 Pi-1

The first term arises from the fact that when a jump occurs in the interval between
t;and t;_,, the event Fj is independent of the past. Thus the first summand in
equation (IV-3) is just ﬁi Bi. When no jump occurs in the interval between tj and
t{.1, we must take the past behavior of the process into account. The conditioning
in (IV-3) states that, among cther things, the event F, has occurred. This means
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that X;_1 ST, -1 and consequently Xi Ty.1» since there has not been a jump between
ti-1 and t;. Now, since the thresholds do not get any smaller as we proceed backwards
in time, we gain no new information from the condition that events Fy,...,F;_o have
occurred. Thus

E

PI‘{ Fi I Fl m. .o Fi_l n.f‘i} = Pr{X‘ sTi I){i .<_Ti_1} = 5—‘—’
i-1
whence formula (IV-4) follows.
The situation is slightly simpler whenever i > ¢. In this case,
dj = Ei B; + Bi =1 -5 p;- (IvV-5)

As before, the first summand of (IV-3) becomes p B ., since the event F is
independent of the past when a jump occurs between 1;l 1 and ;. When no jump
occurs between t;.q and t;, we have Pr { F IF M...(\F;_1}=1, since, in this
case, X;. 1 =¥; and the conditioning states %.hatxl 1 S Tj_j. Buti> cimplies
that Ty_; = Tv and therefore, X < < Tj. Thus when i > ¢, the second summand
in (IV-3) is given by Bi,and this establishes (IVv-5). Combining (IV-4) and (IV-5)
by means of (IV-2),we obtain the conclusion.

ki g g

Corollary. Suppose the observations are uniformly spaced, that is,

ti=(@{-1)6 fori=1,2,...,n
Then the formula for Py is

P 1 l-pc I 1-
= - e [] ’
n l‘ﬁ pc i=1 ( Bpl)

where B i% the probability of at least cne ]ump in an interval of iength 6 , i.e.,
B=1-e™A0,
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In the next theorem we proceed to compute P, , the limiting value of cdp when it
is assumed that the process X* can be continuously observed over an entire interval
[0,t]. Such a probability might be expressed formally as

P, =1-Pr{ sup XJ -T; <0};
0is<t

we define its value to be Em Pj, where Py is the cdp resulting from taking n
uniformly-spaced observations in the interval [0,t], with the first observation at 0
and the last at t.

(It can be shown that even when the observations are not uniformly spaced, the
same limit will be obtained as-long as the first and last observations are at times 0
and t respectively, and the maximum time between observations approaches zero. )

Recall that p was defined to be the probability of a success in a trial at time t,

and define s, to be a point such that Tso is a minimum threshold.

Theorem IV-2.*  Let the unimodal threshold function T* be a continuous
function. Then the limiting cdp, P, , for continuous observations over the interval
[0,t] is given by

t
Po=1-(1-pg ) =%p [-A Jypg ds],

where A is the intensity of the Poisson aggregate-jump process.

Proof. Let the interval [0, t] be divided uniformly into n - 1 intervals of
length 6 -~the observations taking place at the points t;j=(i-1)6. Now, using

* In the more special case when the thresholds are monotonic, this formula
was obtained earlier by J. D. Kettelle Jr. (see reference [h], page B-4)
using a differential equation approach. Both results include Theorem H-1
of Chapter I, which assumes that the thresholds are constant.
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the corollary to Theorem IV-1, we have

B *Pe Ia )
n—l"‘ﬁpc i= ( Bpi’

where

B=1-eM0 =26 +0(5)

If there is more than one candidate for ¢, we choose ¢ so that t; is at minimum distance
from s,. Clearly then, t¢c - s, asn - «. We compute '

n-»o

by the use of logarithms. Now

n
In By =In (1-pg) - In (1-Apc) + Z In (1-B p)
l:

?

n
=In(1-pg) -In (1-Bp;)+ Z In(l1-Ap; 6+0(5))
i=1
n
=In (1-pe) -1In (1-Bpg)+ .21 (=Ap; 0) +n- o(d).
i=

Finally, since limn_’w B=0and n=1+t/6 , we have

t

5 s 5 * t x
In P, = lim InPy=ln(1-pg ) - A [y pg ds.

n->c

o
s e MEAEAY L damg 4 ok b e R TN W S oo e A =




f‘,,
"e*‘v'ﬁfl

##

Here, the fact that p: is non-decreasing and then non-increasing ensures that it is
continuous almost everywhere and hence Riemann-integrable, Further

lim, ., Pe = pso since p, =1 - K(Ty), Tt - Tg, from the right (since T is con-
tinuous and Tg, is a minimum threshold), and K is a distribution function and hence
right contmuous Ny

, #H##H
¢

General Thresholds -- A Recursive Stheme

One might attempt to compute:“cdp for n discrete observations of a step process
by simply making a list of ]l the different configurations of jumps which are possible
in {he n-1 intervals of time'betyeén n observations, and then compute the non-
detection probability for each t%nﬁgurauon The result of adding these together
weighted by the probability of ‘ach configuration of jumps would then give 1-P,,.
However, if we denote the eve‘gt "at least one jump" by a 1 and the event '"no jumps"
by a 0, then it is clear that thefe are 2(n-1) ways the jumps may occur. (We are
not particularly interested in "how many" jumps occur in an interval, since the net
effect of any number of jumps is to cause us to take another independent sample
from the distribution K.) Clearly, the above method of computing cdp would become
tedious for large n. The recursive scheme to be described is a considerable
improvement over such a straightforward approach.

As before, let {tl} be a sequence of observations, and Py be the probability of
at least one jump occurring in an interval of length t; -t;_1. In addition, let

qk’j=Pr{Xi- min T;} = =K( min T fork 2 j.
ilisk ilisk

Notethatqj j=5j'

We shall compute l—3n for n=1, 2, 3,4 in order to demonstrate the method of
comnputing P 1 in terms of 13 Table IV-1 shows this cormaputation. The symbol
Qm(k) denotes the contrxbutlon to P, from all configurations of jumps ending in
k zeros. When k=0, we, of course, refer to thuse configurations ending with a 1.
The case n=1 is trivial, i.e., §1=ql L= Pr {Xlﬂ Tl} . An inspection of
Table IV-1 shows that, ’
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TABLE 1IV-1

CONTRIBUTIONS TO cdp -~- RECURSIVE SCHEME

Configuration of Jumps Contribution to P,
¢
. (0)
1 Py 95 2 9 4 Q
n=2 4 _ )
L By 9,4 Q,
4
11 By Py 933 9 2 9 4 )
2 Q
?
01 Fy By 933 9 4 3
n=3 ﬂ _ )
10 By Py 932 9 4 Q
3R (2)
00 B3 By 95 4 Q
( .
111 By Py Py 9y %3929,
011 By Pg By 4y 4 95 3 9 ©
- ?_ Q
101 By By By G449 59 4 4
_ 001 By B3 By 4y 4 % 4
n=4 A B
n N
110 By Py By Y3 %,9, )
s L Q
010 By B3 By Y 3 994 4
5 JoL@
100 By P By 9y 2.9 4 Q4
5 5 @)
000 By Py By 9y 4 Q,
—49-
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Moreover,

The general recursive formulas are given by the following set of equations:

0) _ 5
Q =B34 °

q
32Q(0)

) _
Q, ﬁ3 % 5

@3 E_s__}_Q 1
% 34y,

©, o @, (a-1)

n=Q G *Q

0) _ 5
=By %,n Pn-l

%

1 _= In,n-1 )
= p ——————— Q
Qn n qn-l,n-l n-1
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A

m-1) _ - 1
Q, ~"n % 1.1 n-1

The procedure begins at n=2, where

) _

Q =Py 9,9 4

and

()_
Q =Py 9y

Assuming that the ratios involving 9 j ; have been computed beforehand, it takes
about 2n multiplications to go from P -1 to P Thus, in order to compute P
starting from P2 we must make

n
2 Z i=n(@+1)-6
i=3

multiplications. Clearly this is better than the "straightforward approach" which
would involve more than 22-1 multiplications. Certain special threshold functions
will also reduce the amount of calculation.
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! CHAPTER V

f

STEP-PLUS-JITTER PROCESSES

In this chapter we assume that the continuous-parameter process X* is
a ''step-plus-jitter" process. This is a step process perturbed by slight distur-
bances which we call "jitter." Precise definitions will be given in the next
section. The computation of cdp, B,, will be discussed only for the case of a
finite sequence of observations of the continuous-parameter process, i.e., no
limiting cases will be considered.

Recall that the problem of finding non-recursive formulas for cdp for
an ordinary step process was quite difficult except when the threshold function T
was unimodal. The presence of jitter further comp!icates matters,and in fact
no non-recursive formulas have been found, even in the case where the threshold
function is constant. However, recursive relations similar to those of Chapter IV
are derived which are valid for an arbitrary threshold function and for any finite
sequence of observations. These are given in the second section. The main dis-
advantage of these relations is that they depend upon a number of integral expressions
which may be difficult to evaluate. Even assuming the values of the integrals are
known, the number of multiplications to compute cdp, P,, is of the order of n2.

In order to avoid these difficulties, an approximation to the step-plus~jitter
process by a special "m-dependent" (see Appendix A) process is discussed in the
last two sections. When the threshold function is constant and the observations
are uniformly spaced, cdp may be computed for the approximate step-plus-jitter
process by recursive relation: which greatly reduce the number of integrals to be
evaluated. In addition, the computation of cdp for the approximation requires merely
order of n multiplications. The last section deals with the general m-dependent
approximation, while the section preceding it considers in detail the special 2-depen-
dent case. Here numerical calculations as shown in Figures V-1 through V-3 indicate
that the approximation is most satisfactory when there is a high probability of a jump
occuring between observations.
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Definitions

A. step-plus-iitter process X* is defined to be the sum of two stochastic
processes Z* and J*, where Z* is a step process, and J* (called jitter) is a process
of independent, ideniically-distributed random variables,which is assumed to be
statistically independe.t of Z*; the common distribution function of the random var-
iables J¥ v:ill be denoted by G.

We recall a step process, Z*, is defined by the equation

where Y is a process of independent identically~distributed random variables, and N
is a Poisson process describing the occurrence of jumps.

As usual, let X, Z, and J be the discrete-parawmeter process resulting from
making observations at ihe points t4,...,t,. For any such sequence of observations,
we let

fie,; =Pr{X;<T, X443 $ Tug»- - Xp<Ty | 1o jumps between j and k} .

The quantity fk,j may be computed by

I, Pr{z;+ g STy 2054y STyeps - -0 25+ Jj<Ti )

=Pr{J;<Tj-Zj, Jj+1<Tj+1 ~Zj»-- - IS Ok-Z 3} (V-1

k
=l B , GTy) AR,

where G is defined above «.d K is the location-after-jump distribution of the step
process. Note that when the threshold function T is constant (T=T,), fk 3 depends
only upon k-j. In this case, we denote f ; by f.-j and ’
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The autocorrelation associated with the step-plus-jitter process Z* + J* is

0_2
K -
a(s) = ———— e” 8 for 570,
O'K +0’G
a(0) =1,

where 02 and o2 are respectively the variance of K and G, and A is the intensity
of the P%isson process N. This is seen by applying Theorems C-2 and C-4 of
Appendix C. Note that o is discontinuous at 0 (assuming, as we-do, that a(f# 0,
i.e., the jitter is not constant).

Exact Recursive Formula for cdp

In this section, recursive relations will be displayed which allow one to
compute the exact value of cdp, B,, whenever the underlying continuous-parameter
process is step-plus-jitter. These relations are identical in form (with a substitu-
tion noted below) to the relations appearing in the last section of Chapter IV.

They apply with arbitrary threshold function.

Again, we use 1 and 0 to represent the occurrence or non-occurrence of
one or more jumps in a given interval and Bj for j>2 is the probhability of at least
one 'mp occurring in an interval of length tj"tj-l' The symbol Q(lé) is used to denote
the « ontribution to B, from all configurations of jumps ending in k zeros. The only
specific change which has been made in going from the relations of Chapter IV to
those of this section is to replace ak, j with fk,j defined in the preceding section.

The relations are now given by the following set of equations:

Py =Y +qll) + ... 40D
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1 - n,n-1 0
Q(n)”ﬁnf—ﬁr" e
fn,n-2
@ -5 2% L0
Qn Bn fn-1,n-2 Qg')l
-1y __— 1 (n-2)

f -1,1 1
The procedure begms at n=2, where

(0)

Qg =821 -7y,

and

Q()‘Bz f21

The reader may verify these equations by consulting Table 1V-1 of Chapier
1V, keeping in mind that the symbols U should be replaced by fk . Note that

multiplications in order of n2 are required to compute B,, assum g that the required
ratios of the fi, ; are calculated in advance. In view of equation (V-1), the calcula-

tion of fk coulci be a formidakle task. -The type of approximation introduced in the
next two se iions substantially reduces the number of fy ; to be computed.

The 2-Dependent Approximation

In this section we discuss in detail an approximation to the step-plus-jitter
process by a 2-dependent process when the threshold function is constant, and the
observations are uniformly spaced (i.e., t; =(i-1)6). This is a special case of the
general m-dependent approximation discussed in the next section. We have singled
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out the 2-dependent approximation because it is the simplest non-trivial exampie of
the general method. Appendix A defines m-dependent processes, which are used in
these approximations.

As we have seen throughout this report, the presence of correlation between
random variables makes the problem of computing cdp vastly more difficult than was
the case for independent random varizbles. In fact, the literature survey in Appendix B
showed for the class of Gaussian processes, there are no finite procedures or tabula-
tions available for the computation (under general conditions) of cdp for as few as
three trials. For the two-dependent approximation X, however, the random variables
)Zi and X j are independent whenever |i-jj>2. This manifests itself in the fact
that the recursive formulas obtained in this section for the approximation will require
only order n multiplications for the computation of cdp--in contrast to order n2 multi-
plications to compute the cdp for the actual step-plus-jitter process.

As was noted earlier, whenever the threshold function is constant, fk, j depends
only upon k-j and is denoted by fk-j-

The approximate step-plus-;itter process is obtained by constructing a new
aggregate jump process I', which will resemble the discretely observed Poisson pro-
cess with the exception that at least one or more jumps must occur in every three
or more successive intervals.

Let

i
= 2

2 for i>1 ’ (V-3)

where 7; may assume only the values zero or one. We will consider n; =1 to mean
that one jump has occurred in the interval the (1-1)St and 1R observation while 7,=0
will mean that no jump has occurred in this interval. The process 7 is defined to be
a stationary 2-stage Markov process (not to be confused with a 2-dependent process--

(see Appendix A) with two states, 0 and 1. The transition function ¥,

¥(i,§;K) = Pr{ np4p =k |n;=i and ny,; =j} for any 1>2,
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is specified to be of the form
¥(i, js1) =X,

whenever i and j are not both zero,and
¥(0,0;1) = 1.

We have chosen this particular specification ir order to have the process, 7, resemble
a sequence of independent, identically distributed random variables. The constant x

(a conditional probability) is, at this point, unspecified. In fact, the proper selection
of x is the critical part of the approximation.

The initial disiribution @,

¥(i,J) =Pr {n, =i,ng =i},

is taker: to be the stationary initial distri bution found by solving equations

$(0,)) ¥ (0,5:k) + 9(1,j) ¥ (1,5k) = $(j,K) for 0<j, k<1.

The solution is, of course, expressed in terms cf x and is given by

St

-2

X
0’0 D e —c————
00,0 = A

X
(1’0 T e em———
§LO = 5

it



0,1 = —m———ro
PO = s
¥(1,1) = .

Note that

Pr{ny =1} =§(1,0) +§(1,1) = m :

In order to choose x , we equate Pr {n, =1} with the probability of at least one
jump in an interval of length 6 for a Poisson process, obtaining the relation

1
ISl L P — (V-4)
xz -3x +3
or equivalently
5 e?uS
(x“-3x +3) =
e -1

Here A is the intensity of the Poisson process N. Note that (V-4) implies that,
1-e~M0 , the probability of at least one jump in an interval of length 6 , must be at
least 1/3 for a solution to exist. Since x2 - 3y +5 is strictly decreasing for y
between 0 and 1, a solution in this domain will be unique when it exists.

The 7 process has now been completely specified, and hence so has the
aggregate jump process I which was defined in terms of n by equation (V-3).

Finaily, the approximate step-plus-jitter process, X, is defined to be




where

Z=YF

The process X is 2-dependent because if i-j>2, then fii and X j are independent,
since I'will have increased at least once between time i and time j. Also, the stationarity
of X is a direct consequence of the stationarity of

Recursive relations will be derived for computing cdp for X, under the
assumption that the threshold function T is constant (T= T,). To this end, Table V-1

gives the array of possible realizations of  for the case where n=5 (i.e., 1=1,2,3,4).
Note that

Pr{xngo vere s Xy STy | no jumps indicated by T between j and k}
=Pr{Zj+Jj<T,...,2j + Jk<To}

F:f-: Gk-j+1 (']b "X) dK(x) = fk’j ,

by equation (V-2).

Each row in Table V-1 represents a different realization and the expression
following each is the contribution to the nondetection probability of that particular

path.

The recursive relationships for cdp, Pn’ are given by writing Pn in the form
By = (1,1 MED + p(1,00M{10) + y(0, pMPD + (0,0) MO,

where ¥ (i, j) ng) is the contribution to B, from all the cases where the fir?%. wo
values of the realizations of 7 are i,j. We may express Mg]) in terms of Mnf 1 by
the relations
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TABLE_V-1

CONTRIBUTIONS TO cdp -- RECURSIVE SCHEME

Jump Configuration

1

1

1

1

1

1

1

1

0

1

0

1

Contribution to ﬁn

$(1,1) ¥(1,1;1) ¥(1,1;1)
P(1,1) W1, 151) ¥(1,1;0)
$(1,1) ¥(1,1;0) ¥(1,0;1)
$(1,1) ¥(1,1;0) ¥(1,0;0)
$(1,0) ¥(1,0;1) ¥(0,1;1)
¥(1,0) ¥(1,051) ¥(0,1;0)
$(1,0) ¥( ’/,0;0) ¥(0,0;1)
$(0,1) \I'(ll;l) ¥(1,1;1)
$(0,1) ¥(0,1;1) ¥(1,1;0)
$00,1) ¥(0,1;0) ¥(1,0;1)
$(0,1) ¥(0,1;0) ¥(1,0;0)
${0,0) ¥(0,0;1) ¥(0,1;1)

$(0,0) ¥(0,0;1) ¥(0, 1;0)
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Mglj) = £ {¥(1, j:0) Mg?} +¥(1,j;1) Mf{‘..li}

£
MgOl) - ‘f;— {%(0, 1;0) Mgl_of + ¥(0, 1;1) M(nl_l} }

£ f
(00) _ 2 qy m0D 2 4 (01)
My == WO,0) My = My
1 1
and the initial values are
(11) 3
Mg =f
(10)
M3 =fof;
M = 11,
I
(00) _ |
Mg " =f,.
‘
One may easily see that these relations are valid by inspecting Table V-1 _ ;

for the case of n=5.

Note that, in general, one never needs to use the values of {j for j>2. This <
is what makes the approximation convenient since the exact expression for B, would "
involve all values fjy, -..,fy-1. Once the ratios fa/f; and f;/fgp have been computed
and M(:xj) are known, it requires only 10 multiplications to obtain all M{1)). Thus it :
only requires 10 (n-3) +4 multiplications to obtain R, from the given valtes of M(g) .

Also one need not compute R, separately at each stage.

Figure V-1 shows the non-detection probability B, for a step process Z
(no jitter present) and the corresponding approximate step process Z versus the
number of trials n. The single-trial probability of failure is taken to be .8. The
comparison i8 made for a high probability (.865) of one or more jumps occurring
between trials and a low jump probability (394). Note that .865 and . 394 correspond
to A6=2 and Ad=}, where Ad is the expected number of jumps between trials
for the Poisson process. Also note that .394 is close to the limiting value
of 1/3 -- the smallest value for which the approximation is valid. (A line
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representing the value of 1-B, under the assumption of independence between

trials has been included in the figure for reference.) The formula for unimodsl
thresholds (Theorem IV~1, Chapter 1V) was used to compute 'Pn for the step process.
The figure shows clearly that even in the worse of the two cases (jump
probability = . 394), the percentage error does not exceed about 6%.

In order to test the approximation when jitter is actually present, we have
made a comparison for the following special type of step-plus-jitter process. (The
results appear in Figures V-3 and V-4). Let the "location-after-jump'* distribution
K be given by

po
0 when x < -a

-

xta
Za when -a<x<a ( ,

B,

K(x)=

1 when x>2a
- . .

and the jitter distribution G be given by

r& —

when x < -¢

G(¥)=< }2-%0- when -c< x< ¢ >

l1whenx>c¢

- -

Both K and G have thus been taken to be uniform distributions where the mass of K is
located between -a and a and the mass of G is located between ~-¢c and ¢c. We shall
choose ¢ to be smaller than a, as the word "jitter' implies. Now

£, =/ ™ (T, -0 dK(x)

= .51.- ffa Gm+1(To-x) dx for m> 0,
2

and, assuming that T, =0,

R}

%mw_ R v * S P e




a-c ¢
+ .
2a (mt2)a

+1
tm= 5 By @ (wdx =

Note that as the jitter becomes smaller and smaller, i.e., ¢=*0, fm -1 which corresponds
to the value of {, for the pure step nrocess. Figures V-2 and V-3 show a <omparison
between T’n as computed for the step-plus-jitter process and for the approximate step-
plus-jitter process in the case just described. In each figure we have included for
comparison, lines representing i5n for the case of independence between trials and the
cage of the pure step process (i.e., without the ji tter present). Figure V-2 assumes
that the probability of at least one jump between trials is .865 and Figure V-3 assumes
that the jump probability is .394. (These are the two cases that were shown in Figure
V-1 for the case of a pure step process.) The figures indicate cl:arly that the approxi-
mation is much better when the probability of one or more jumps in an interval is high,
This is to be expected since in this case one would expect T to be a better approxima-
tion to the Poisson process. Also, in the cases considered, the values of iin as computed
for the pure step process are surprisingly close to those computed for the actual step-
plus-jitter process. One must be careful in drawing general conclusions, however,

since the G and K distributions are of a very special type. Finally, note what a poor
approximation is given by the assumption of independence between trials.

The m-dependent Approximation

In this section, the results of the preceding section are generalized to the
case of an m-dependent approximation. The method of approach will be exactly the
same, i.e., the Poisson arrival process is approximated by a multi~stage Markov
process I'. The approximate step-plus-jitter process is then defined in terms of I".
On intuitive grounds, one would expect the approximation to become better with increas-
ing m.

Once again assume that

i

G =1§2171, for i>1,
(V-5)
rl =0 9

where n may assume only the values zero and one. We now define 1 to be a stationary
m-stage Markov process. That is, the transition function ¥ depends on the past
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m positions of the process. Let

¥ty ig, . 0i i) =Prl{my =jlng_ g =t oMoy =ig)
and

$(ys- o oip) =Pring=iy, ny=ig, . conpyq=ip},

where the i's and j are either zer» or one. The transition behavior of n will once again
be chosen in such a way as to make  resemble a sequence of independent identically -
distributed random variables, the exception being that no sequences with more than m
succesgive zeros will be permitted. Thus, the transition function ¥ is defined by

Wiy, ..0ipil) =x forig+. .. +ik;é0,

¥(0,...,0;1) = 1.

The equations defining a stationary initial distribution § are given by

1
k2=30 $(k,i1,09, .o sig-1) (K, i1,19, .« o dg-13iR)=P(is - - - ipp) -

The existence of such a distribu‘ion is assured by the fact that the m-tuples
M sM+1s - »M+m-1 ) form a vector-valued Markov process (reference [s], page 89).

Finally, we equate Pr{n; =1} with the probability of at least one jump in
an interval of length 6 for the Poisson process, and solve for the appropriate value
of x . This step is expressed by (213 denotes the summing over all subscripted i's).

-Ab
Pr{n =1} -? P(Lodg,..ip ) =1-e " .
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The 1 process is now completely specified, and hence so is T by equation (V-5).
The approximate step-plus-jitter process X is then defined by

X=27+J,
where
Z = YI"

-

The same reasoning as in the last section shows that X is stationary and m-dependent.

The recursive relations for computing cdp are again found by expressing B,
in the form

?n = f PlLig, .- 5ip, ) Ml(llil “re gy

+ P00, 1iy,0 iy o) M0l -im-2)

; L " (V-6)

+$(0,0,...,0,1) MI(!OO. ..01)

+9(0,0,...,0 M09,

and

WALt

-
»

méﬁ&‘.ﬁmu B R B s, sin B T st

(Lig...i_ i1...i0_10 iy. iy _q1
M, I'm ? =fo(\1v(1,11,...,im-l;O)M,(,_ll m-1 )+~1:(1,11,...im-1;1) Mf,.}l m-11)
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00...0) f 00...01 f 00...01
My )=%_-1- %0,0,...,0:0 Moy P =—{f’—; my Y (V-7) !

These relations may be verified by examining the possible ways the jumps may occur.

The general scheme described by equations V-6 and V-7 is applicable only
for finding P' where n>m. A modification would, of course, be possible, but this
would involve more labor than actually computing the true P, for n<m. As it is, we
still have to specify the values of M(11 1 -im) in order to iLitiate the recursion. These
are given by noting that : .-

(1. . +ipy) .
Mm+1 Pr{P m+1 I nz—ll, 173 1""'=nm+1 =lm},

which may be found by inspection. For example, if m=€, then

101001) _ -
M = fot; fofo-

The number of multiplications needed to find M, (given M, _; and the ratios
fi41/fj for j=0,...,m-1) is

3 (2™-1) +1. (V-8) B

_ It is important that n does not appear in (V-8) since this implies that the number of o
multiplications required to compute any Fn is just of the order of n. However, the
fact that (V-8) increases rapidly with m suggests that only the approximations using
small values of m would be practical for most applications.
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APPENDIX A

SOME FUNDAMENTALS OF STOCHASTIC PROCESSES

This appendix discusses some elementary concepts in stochastic processes
relevant to the body of the report. Although the measure-theoretic approach to
probability theory has provided a solid foundation for the subject and has led to
many new and important advances, an effort has been made here to present the
necessary concepts without resort to measure theory. This discussion is certainly
no substitute for a text. For an advanced treatment of multivariate distributions,
see, for example, Crameér, reference [r]. For the more advanced subject,
stochastic processes, see either Doob, reference [ s], or Rosenblatt, reference

(t].

The first section discusses random variables and distributions. General
stochastic processes are discussed in the second section, while the third section
is addressed to the important class of Markov processes.

Random Variables

An n-dimensional random varig,ble*x =Xy,...,Xy) may be regarded as a
real vector which describes the outcome of some exveriment which may be repeated
(at least conceptually) a large number of times under uniform conditions. Associated
with the random variable X is a function H of n variables, called its joint distribution
function.® A function H can fill this role if, and only if it satisfies the following
conditions (see reference [r ], page 79).

(1) 0<H(Xy,...,Xp) < 1

@ xi{i’r?o H (Xg,...,%) =0fori=1,...,n !
3 1 oo s Xp) =
9y L) =

*  Such an n-tuple of one-dimensional random variables is also a stochastic process
(next section). The two terms refer to the same object from different viewpoints,
both useful.

A-1
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) H is non-decreasing and continucus to the right in each variable x;

(5) The differences

H(xl +y1,...,xn+yn)-H(X1, x2+Y2,--- ’xn+yI1)
- ~HXy +¥15.+.9%-1 t Yn-1° Xp)
+... +(-1)nH(x1,...,xn)

must all be non-negative.

This function specifies the stochastic behavior of the random variable X in the
sense that the probability that Xj not exceed x; for i=1,...,n is defined to be

H(x1,...,%,). In symbols,

Pr{X;<x; fori=1,...,n} =H(xy,...,xp).

Thus 1-H is a cdp.

The set function Pr may be extended to a much larger class of sets than just the
particular n-dimensional semi-infinite intervals Xj < x; fori=1,...,n. See
reference [r] for the details of this construction.

The conditional probability that X be a member of A, given X is a member of
B, is defined to be

LS

Pr{XeAmB}.
Pr{X ¢ B}

Pr{XeA|XeB} =

Suppose now that g is a real-valued function of n variables and integrable in
the Lebesgue-Stieltjes sense (see reference [r]jwith respect to H. Then
g(X1,...,Xn) is a random variable; its expectation is defined to be -

E{g®X1,...,Xp)} = f:o f_: g(Xqs .- »Xp) dH(xy, ..., Xy). .

A-2 .
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The mean, pj,and the variance, oiz, of X; are defined by
pi =E {x;}
o2 =E {(X; - u)?},

when the expectations are finite (to which case we restrict ourselves). The square
root, oj,of the variance of X is called its standard deviation.

The correlation coefficient p;; between X; and Xj is defined by

_ E{Xi - mi) (Xyn9)}

O'iO'j

pij

providing o} % #0. The concept of correlation permeates this report (Appendix C
presents some miscellaneous correlation results). Note that -1< pj;<1. If

> 0, then X; and X tend to be high together or low together, and the magnitude
of] pij is an index of this tendency. If pij < 9 (probably not important in cdp problems),
then X; tends to be high when Xj is low, and vice versa. If X; and Xj are independent
(defined below), then pj; =0, but not necessarily conversely.

The correlation coefficient between two two-state (i.e. success~failure) random
variables will be denoted by r rather than p. It is important to realize that the correla-
* tion between success-failure variables obtained by thresholding multi-state variables
- does not, in general, have the same value as the correlation between the latter,as
shown, for example, by Theorem C-3, Appendix C--for a non-trivial case where the
two are the same, see Theorem C-4.

In the one dimensional case (n=1), the distribution function H is just a non-

decreasing right-continuous function such that

lim H(x) =1
X*00

lim H(x) =0.
. X*=00

A-3
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If H is absoiutely coniinuous, then it is expressibie in the forni

H(x) =[5, h(y) dy,

where h is called the probability density function associated with the random variable?
at points x where H is differentiable (which is almost everywhere},h{(x}=H'(x).

A one~dimensional random variable X is said to be normally distributed
when it has a demsity function h of the form

1 Ly X2
h(x) = ——— e 25 ;
ovaT
here o2 is the variance and ¢ the mean of X. ' Jensity function of the normally
distributed random variable with 4 =0 and oc2="  :alled the standard normal density

and is denoted by ¢. In this case, the corresponding distribution function is
called the standard normal distribution and is denoted by &.

! In general, if a joint distribution function H(x4, - .., X,) may be expressed in
the form

X X
Hxps--ox) =/ 2 oo [ 2 b .hyy) dy, dy

then h is called the joint density function.

The random variables Xl’ - ,Xu are said to be multivariate normal whenever
their joint distribution function H has the following density:

h(x) = exp {~3x-p) V' (x-p)'} , (A-1)

@m™2|v| 3
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where x=(x1,...,%,), #= (”1’ .+sshp) and V is the non-negative definite symmetric
matrix of covariances V1] Pij (the prime denotes the transpose)--again u; and
o2 are the mean and variance & Xj respectively. The symbol | V| denotes the deter-
minant of V. Stricuy speaking, the distribution thus defined is called non-singular
multivariate normal, owing to the nonsir;ula’ &y of V. A more general definition

of multivariate random variables is avai.»’..e which applies even when | V| = 0.
However, in this case, the variates do not have a density function and we Wlll not
consider this case further (see reference [ r], page 312). Note that Vj; = al and
hence, if we wished, we could express the correlations in terms of the covariances

by

P "Wj
"
SR

When n=2 and X; and X,both have mean zero and variance one, formula (A-1) becomes

Xlz-Zp X 1X2+X22

1
hix+, S -
(e1:%2) 27V 1-p 2 exp | 2(1-p 2

where p is the correlation coefficient between X, and X,. This is the bivariate normal
distribution -~ it is tabulated in reference [ p ], which is very useful in the methods of
Chapter III. While there are numerous applications of the multivariate normal through-
out the statistical literature, our present interest is in its use in the description and
study of Gaussian processes which are defined in the next section. ‘

In concluding this section.we define the important concept of independent
random variables. This is most easily done in terms of marginal distributions.
As before, let X =3, ...,Xp); then the marginal distribution H; of X; is defined by

Hi(x) =Pr {Xj $x} =H(c0,00,.-+,X, .00,

where x is the ith argument of the joint distribution function H of X. The random
variables X;,...,Xy are then said to be independent if
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H(X1, ... ,Xp) = Hy(x3) Ha(x) ... Hu{xy).

If Xy and X, are independent, then we can express the distribution function H of their
sum, X; + Xg,by the formula

H(x) = [, Hy(x-y) d Ha(y),

where H is called the convolution of H; and Hp (used in Chapter IV).

Stochastic Processes

A stochastic process X is simply defined to be an indexed collection of
random variables X;. We restrict each X; to be one-dimensional unless noted other-
wise. The set of indices t is called the parameter set of the process. In this report
the parameter set is restricted to be either the half line [0, o) in which case the process
is said to have a continuous parameter or the positive integers, in which case the
process is said to have a discrete parameter. In order to make this definition precise,
one must specify the joint distribution of every finite sub-sequence (Xtqs -+ -2 Xty) of
the random variables in a consistent manner. Let Hg,¢,. .. denote the joint dis-
tribution function of Xtq, ... RWE then the following conditions must be satisfied:

(1) If k is a permutation of the integers 1,...,n, then
H (X, ,...,X =H (Xq9-005X).
tn tK "'tu Kl Kn tl,...,tn 1 n
1 2 n
(2) If1 < j<nard e STOTRRRRE approach infinity, then

KqsereyXs) = KqgseesXis00,eeo,00.
Htltz...tj(l P =Bt ..t (1 §300 + « -5 )
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The set of possible values that the random variables may assume is called
the state space of the process When the random variables can only assume a finite
or a countable number of valvcs, the state space is said tec be discrete, and when the
random variables can assume an uncountable number of values, the state space is
said to be continuous. The underlying stochastic processes X'discussed in Chapters
I, IV, and V all have a continuous state space, while the two-state process D
discussed in Chapter II has a discrete state space.

A Gaussiar process (treated in Chapter III) is simply defined to be a stochas-
tic process for which all the joint distributions Hi ito. . -ty are multivariate normal.

A process X is defined to be stationary if and only if
Pr{X; < x for i=1,. ..,k} =Pr {Xti.,,sixifor i=1,...,k},

that is,

Htl‘ . -tk(xl’ T ’xk) = Ht1+s,t2-ks, A ,tk+s (xl’ s ,Xk)-

One may express the content of these equations by saying that the stochastic behavior
of the process is invariant under displacements in time. If the process is stationary,
then, assuming that the means and covariances are defined,

(1) the mean and variance of Xt are independent of t; and
(2) the correlation pg ¢ between Xg and X; depends only upon
s-t| .

Associtted with any stationary process is the autocorrelation function «, which is
definc4 by

¢(8) =Py g4t >

i ean T

1XY
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whenever both t and s+t are parameters of the process. If X and W are stationary
stochastic processes. with the same parameter set, then their cross-correlation
function PxwW is defined by

E{(Xg-E { X4t D) W-E{W, }) }
p . (8) = ,
XW Ox Ow

where o 2 and o, 2 are the common variances (not zero) of the X and W processes
respectively (cross-correlation arises in this report only in Theorem C-1 of Appendix
C). Note that when X is a discrete-parameter process, the domain of o will be the
entire set of integers, and when X is a continuous-parameter process, the domain

of ¢ and P xw will be the entire set of real numbers. Also note that a(s) = a(-s).

A discrete parameter process X is said to be m-dependent if X; and Xj are
independent whenever |i-j| >m. This type of process was useful in approximating
the "step-plus-jitter" process in Chapter V. The autocorrelation function o for a
stationary m-depende:ut process has the property that a(s) = 0 for | sl >m.

Markov Processes

Finally we discuss the important class of Markov processes. A Markov
process may be thought of as a process where future behavior is independent of the
past, given exact knowledge of the present. We may express this formally as

pr{ANB| Xy=x}=Pr{A|X, =} Pr{B|x, =},

where A is an event defined by a coadition on random variables with subscripts less
than t and B is an event defined by a condition on random variables with subscripts
greater than t. An equivalent formulation of this statement, known as the Markov
property, is that '

Pr {thﬂﬁ)" Xy no -0 Xy =X} =Pr{th+1_<y| A, =,}, (A-2)




for any t <tg<...<t .-

Suppose for the time being that both the state space and the parameter of the
process are discrete (this case is often referred to as a Markov chain). For conven-
ience, we denote the states by the positive integers, i=1,2,... . Let the jth transi-
tion matrix (or transition function) \Ilj and the initial probability vector § be given by

¥i(k,b) = Pr{X; =h | Xj-1=k}
and

Pk =Pr{X; =k}

respectively. Using the Markov property (as expressed by equation (A-2)),joint
probabilities may be computed by

Pr{Xj =ki,...,Xp =kn} = o(ky) ¥2(k1,k)..- ¥ (kp-1,kn)- (A-3)

From formula (A-3) one obtains formula (II-5) of Chapter II directly.

Defining, for 1>i,
¥ 10k, h) =Pr{X)=h | X, =k},

the matrix ¥; 1 gives the probabilities of transition from time i t{o time 1 and is comput-
able by the matrix product

¥i,17 jmn Y

A-9
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Multiplication of transition matrices can be useful in cdp problems by use of "trapping
states.'" To idustrate, we give an alternative derivation of formula (II-5) of Chapter II
in this fashion. Replace the transition matrix of Chapter II, by

success failure

success 1 0
failure bj b'j
Here "'success' is a trapping state--once entered it cannot be left. If one multiplies

these matrices for j=2,...,n, then the lower right entry, H?=2 _ﬁj , of the product is
the probability that Dy=...=R}=0, given D; =0. Thus

—_ _ n .
Pn -pl jgz bj ’

which is the formula (II-5). If the trapping sta‘e had not been used, then by multi-
plying transition matrices we would merely obtain relations between the first and
final trials witsout regard for outcomes of intermediate trials.

If the transition matrices ¥ are independent of j, i.e., ¥; =¥, then the
process is said to have a stationary transition mechanism. This will be the case,
for example, when the process is stationary. However, it is quite possible for the
process to be non-stationary and still have a stationary transition mechanism.

In Chapter II we have considered, in detail, the success-failure process D
as being two-state Markov. There it was noted that the transition matrices ¥; could
be conveniently expressed in terms of the correlation Tjiq between Dj and Dj-l and
the single~trial probabilities ?; and pj-l'

Ome apparent generalization of the Markov process is the nction of an m-stage
Markov process. Here, the conditicnal probabilities satisfy a condition analogous to
(A-2; rnmely,

A-10
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Pr{X 7y | sk X g =g} = Pr{Xp g S [ Kook, Xk )

Intuitively, this means that the probability of moving into a new state is independent of
history of the process more than m-steps into the past. (These processes are also
called "muiple" Markov processes, reference [ 8], page 89, or "mstep'" Markov
processes, reference [t ], page 60.) It is worth mentioning that the associated vector-
valued process, (W1,Wag,...),where

Wi = (Xi,Xi+1, ceey i+m-1) for i=1,2, cee

is just an ordinary Markov process, and it is sometimes useful to use this fact. We
use m-stage Markov processes in Chapter V in connection with an approximation to
the "'step-plus-jitter' process.

Suppose now that the Markov process has a continuous parameter. (We still
assume the state space to be discrete.) Let the matrix ¥g ¢ be defined by

¥g ¢(k,b) = Pr{X¢=h | Xg =%},

for each pair of parameter values s, t such that t>s. As before, the Markov prope}'ty
(expressed by equation (A-2))allows us to compute joint probabilities by the relation

Pr{X, =%,,..., }=pr{x, =%,}¥ ko). . k).
X, oo Xy S PRk Sogidy kpko) % e Kpogeky)
The transition matrices ¥g ¢ saiisfy the equation

Y.t =%, 7 ¥r, ¢

analogous to (A-3) for a Markov chain. When ¥, , depends only upor (t-8), the transi-
tion mechanism is said to be staticnary. Again, this will be the case whenever the
process itself is stationary. The Foisson process N, used in the definition of ''step"

A-11
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and "step-plus-jitter''processes, is an example of a discrete-state-space Markov
process with a continuous parameter. Its transition matrices are given by (reference

[t], page 122):

-
(h-k) -A(t-s)
A(t-s
[A(t-8)] e for B>k
(h-k)!
<
‘I’s,t(k’h) =
0 for h<k.
L

Here the state space is assumed to be the non-negative integers k=0,1,..., and

Ny = 0. Clearly, even though the transition mechanism is stationary, the process
is not, since

[agK

Pr{Ng=k}= e~At

which depends upon t.

A discussion similar to the above may be carried out for the case of a
continuous state space (see reference [t ). It is worth noting that the step processes
in Chapter IV are continuous-state-space Markov processes (this fact is not used
explicitly, however), and that in Chapter IlI, Theorems III-2 through III-4 are based
on the assumption of a Gaussian Markov process. It should also be noted
that the autocorrelation function, a, of a large class of stationary Markov processes
(including step processes ax stationary Marlov Gaussian processes) is of exponential
form, i.e., a(s) =e"8 (see reference [s ], page 234).

A-12
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APPENDIX B_

LITERATURE SURVEY ON EVALUATING THE MULTIVARIATE NORMAL DISTRIBUTION

The purpose of this appendix is to survey the previously published work
which has direct bearing on the problem of computing cdp for the class of Gaussian
processes. As noted in Chapter I, this problem is equivalent to evaluating the
multivariate normal distribution function. The paper of Gupta, reference [v],
together with his extensive bibliography, reference [u], provide an excellent review
of previous results on this subject and provide the basis for the discussion in this
appendix.

As elscwhere, we denote by P, the value of cdp relative to a fixed threshold
function T. That is, cdp is given by

it s s

B, =1-Pr {X;<T fori=1,...,n},

B T e S I T

where X,,...,X, are multivariate normal. Unless noted otherwise, the random
variables Xj will be asgsumed to have mean zero and variance one. This assumption
causes no loss in generality, since if this is not the case, we may consider the new
random variables X;, defined by

A Al ey st

-~ Xi-p
K=—
0§

where yu; and 012 are the mean and variance of X; . The random variable X; will then

WY oscsrssgusspsgs




have mean zero and variance one. Moreover, the correlation between )Ei and ij
is the same a8 the correlation between X; and X;.

Most results relating to the exact computation of T'5n fall into the following
three categories:

(1) attempts to express P, in a closed form involving tab-
ulated functions {usually associated with some very
special seleclion of the numbers Tj, e.g., Tj =0 for

i=1,...,n.);

(2 the computation of P, in terms of an infinite series
expansion or the expression of B, as a single definite
integral; and

(3) attempts to give reduction formulas fo1 B,,i.e., methods

of expressing P, in terms of the multivariate normal
distribution for fewer than n random variabies.

Clearly, results in the first category would be most satisfactory for our
purposes if they were sufficiently general. However, the results in reference [V ]
in this category, which we now discuss,are restricted to the special case where
T; =0 for 1<i<n. Even then there are no general closed form expressions available
for B, when n>3. The expressions for n=2 and n=3 are .iven by

P, =1, (arc gin p) (B-1)
4 2
and
P=l-+—1—-(rcsin + arc 8i + arc 8i (B-2)
38 " @ P1g *arc sinp;g +arc sin pyy),

where p;; is the correlation coefficient between X; and Xj ,(see reference {v ], page
801). For n odd the following recursive relation i8 given by Davis, reference [w]:

B =i-ZH +Z Ty +...+-D" = B, (B-3)

B-2
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here P, represents the probability that all of a given selection of j of the X's are
negative and the summation is extended over all (') combinations. In fact, formula
{B-2) was computed making use of (B-~1) and (B-3). For n larger than 3, however,
the intermediate values of P, for j even must be known, and at the present time

these are not available in closed form.

_ If the correlation matrix is restricted to certain 8pecial types, then formulas
for B, may be found for n>3. As a case in point, suppose all the correlations
between distinct random variables are equal to %, i.e., Pij = 1 for i#j. Then one
has (reference [v ])

— 1
b= (B-4)

Another special case i8 where the inverse v-1l= (Wij) of the covariance matrix is
such that

2 if i=j

w; =q-1is li-j] =1

0 otherwise

Here, Anis and Lloyd have proved that (reference [x ])

_ -3/2
B, = (nt+l)

Note that here the random variables Xj are not assumed to have variance 1, in fact
for n=2, each random variable X; has variance 2/3.

While the aforementioned results are interesting from a theoretical point of

view, they are much too restrictive to be of any use at all in computing cdp in practical
situations.

B-3
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Results in the second category are somewhat less restrictive but, of course,
their application must deal with problems of convergence or numerical integration.

An example would be the following formu'a, reference [y], (we are no longer restricted
to Tj = 0,i=1,...,n):

S T ~a;y
. n 1 7i
Pr iXj<Tjfori=1,...,n}= f_z (g, @ (——-——)(1_0‘2)l 1 ¢(y) dy, (B-9)
1) 2
1

providing the correlations pij are given by Pij = Qi@ j for i#j. Here @ is the
standard normal distribution function and ¢ is the standard normal density function.
For more general types of correlation, there are expansions for Py, in terms of
generalized tetrachoric series, reference [v]. However, these are quite compli-~
cated and converge very slowly for high values of Pijl -

The results in the third category are rather snarse and have the disadvantage
of reducing the given problem to another which may still not have a satisfactory solu-~
tion. For example, John, reference [ 2], obtains a formula for evaluating the
probability integrals B, in n-dimensions if those of (n-1)-dimensions are available.
Plackett, reference [aa], also gives a reduction formula applicable for arbitrary n,
but its application is quite laborious when n is large (see page 804 of reference [ v]).

In addition to exact expressions, there are a number of results in finding
hounds on B, The most useful result along these lines for present purposes is the
result of Slepian, reference [bb], which shows how B, changes with the correlation
Pij: The precise statement of this theorem is as follows:

Theorem B-1 (Slepian). Let (X7p,...,Xy) and (X, ...,X,) be multivariate
normal with means zero, variances one, and correlations respectively Pij and Pij -
Then if Pij 2p ij for all i, j the inequality

Pr{X;< Tj for 1<i<n}> Pr{X;<T; for 1<i<n}

holds for arbitrary Ty,eon 4 -

B-4




We now give the following two applications of this theorem to the approximation
of cdp.

Application 1. One can show, using Slepian's method, (see Berman, reference
[cc]) that, when Tj = Tg, for i=1,...,n,

- 2
8k 1 2 -3 To
” < o (7pyy) “exp[- Trog) l- (B-6)

For convenience, let the right hand side of (B-6) be denoted by 6 (Tg,p);). Suppose
that (as in the stationary case) Pi; depends only on |i-j|, and define P
Using the law of the mean, we have

= p1+j , 1.
. n-1
lPr{XisTo for 1<i<n } - Pr {X;< Tj for 1<i<n} | < ,21 lpj | (0-) 6 (Tq, IPj ),
= . '
where X; are independent and normally distributed. Since

Pr{%, < T, for 1<i<n} = &(Ty)",

where P is the cumulative normal distribution, we have a bound on T’n.

Application 2. One can use Slepians theorem in still another way. If

Py =P for i#j, 1<i, j<n,

then it can be shown (reference [ v]) that the desired cdp is




» %

- [%e) n Ti— p%y
Pr{Xi<Tj, for 1<i<n} = [ [.IL @(m)]d‘b(w’

where & is the normal distribution function. This is a special case of equation (B-5)
given earlier. Therefore, if pij are not constant, let

= i ) * - a0

and then

1
n  T,-p2y n_q_,%x2
[~ JL &(————) d®(y) < Pr {X;< T for 1<i<n}< [© 0 % LT yaa(y).
i=1 (l_p)§ o =1 (l—p *).%
See reference [V ] for more details. Ifthe T} = Ty fori=1,...,n, then we have the

slightly simpler formula

1 ~ 1
To-p —p*Z
[ & (= A

® (1-p)2

Tables of values for integrals of this latter type have been made for selected values
of Tg,p (or p*), and n in reference {v].

B-6

2y T-pP
———-) d&(y) < Pr {X;<Ty for all i,1<isn}< [0 én(m)dé(y).
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APPENDIX C

CORRELATION THEOREMS

In this appendix we present four theorems concerning correlation, which
are relevant to cdp calculations.

Theorem C-1 gives a f-:~1wla for the autocorrelation of the sum of two
stochastic processes. Theorem C-2 presents elementary facts on correlation be-
tweentwo-~-state random variables. Theorems C-3 and C-4 relate the autocorrela-

tion of a multi-state process to that of a two-state success-failure process obtained
by thresholding.

Autocorrelation of 2 Sum

Theorem C-1 presents a formula for the autocorrelation function of a
stationary stochastic process which is the sum of . two (cross-correlated) station-
ary stochastic processes. In general this theorem is useful in synthesizing
empirical estimates of correlation from estimates on additive component processes.
Note that if there i8 no cross correlation between X and W, then a simpler state-
ment of the theorem is that the autocovariance (variance times autocorrelation) of
X +W is the sum of the autocovariances of X and W.

Theorem C-1. If X and W are stochastic processes with constant means p,
and ug, constant standard deviations o, and 0g, and autocorreiation functions o3
and ag respectively, then the autocorrelation of their sum is

0‘12011(3) + azzozz(s)wlag [p(8) +p (-s}]

a(6) = 2 2
oy tog + 20'102 (p (0))

where p i8 the cross-correlation function between X and W.
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Proof. We have, denoting the variance of X + W by a2,

?a(e) =E{(X+ W) - (X + Whpegl-(ug + uz>2
2 2
= E {XtXprg} - 11" + E{WWpig} -2

+ E{XWyig} - pypg + E{XpgWit - papg.
It is easily shown that
02 =02 + 02 +20,05p(0).

Since E{Xi+gWi } = E{XW;_g}, the theorem follows. #####

Correlation Between Two-State Variables

The following theorem presents three statements concerning the correlation
of random variables over a two point sample space. Statement (ii) is used in proving
Theorem C-3.

Theorem C-2. Let D and Dy be two random variables over the same two-
point state space {0,1}. Let

p; = Pr{D1=1}, py = Pr{Dg=1}

and
z=Pr{D;=0 and Dy=0} .
Then
(i) 2<py, <Py, andp; +Py S 1+2;
(ii) if 6 < p1,pg<1, then the correlation coefficient r between D; and
Dy is

Cc-2
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(iii) if 0<py»Pg<l, then

) P12 <r P1P2
PPy P1P2

_ P1Po <r< |Plpz -
PDPa /\351132

Note that the quantities in the conclusions do not depend on the state designation --
they could be arbitrary numbers and the same results hold.

and

Proof. Statement (i) is obvious. Proof of (ii) is straightforward computation,
noting that when z,p;, and pg are given, the other three joint prohabilities beiween
D; and Dg are determined. Statement (iii) follows from (ii) and (i). #H###

L
Correlation in Thresholded Processes

Theorem C-3 provides an inequality comparison between the autocorr elation
of a stationary Gaussian process with that of an associated success-failure process,
obtained by thresholding. Since any two observations of a Gaussian process are
random variables whose joint distribution is bivariate noimal, random variables
rather than processes are treated in the theorem. One implication of the theorem
is that the success-failure process associated with a Markov Gaussian process need
nct be Markov (e. g. the special case where T equals the means and equality holds--
if r is exponential, sin~1 r is not exponential).

Theorem C-3. Let X3 and X2 be a pair of random variables whose joint
distribution is bivariate normal with correlation coefficient p. Let D; and Dg be
formed by collapsing X; and Xpinto the two states 0 and 1 by use of a threshold T:

D; =1 if and only if X;>T
Dy =1 if and only if Xo>T.

Let r be the correlation coefficient ketween Dy and Dg. Then

C-3
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and

r>0 if and only if p >0.

If1T=E {X;} =E{Xy}, then || =(@/r) sin™ |p | (in this case r is sometimes
called "clipper correlation. "

Proof. We may just as well assume that X3 and Xy each have zerc mean and
unit variance. The threshold T defines the following regions A, B, A', B', in the plane:

B X‘Z j{%/%/
“””_”-LM:%\TSXl

N
&%

For L a rectangular subset of the plane, let

2 2
1 X" -2p xXyt+y

FL) =[] z=——— expl- ] dxdy
L 2T E 2(1-p %)

We then have, by Theorem C-2(ii),

F(B)
r=1-
F(AJ B) [1-F(AU B)]
Let
_ -x2/2 _ fz dx
o(x) = e e W) =] oxdx,

C-4
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k =4 —o- .
1+p
Then it is straightforward to show that
d F(B) = - ¢(T) ¥ (kT)

dT ¢
and

L PAUB = - o(m)

dT '
It follows that

d (D
) 14 [¥(KT) - (1-1) ¥ (T)]. (c-1)

dT FAU B [1-FAU B)]

Letting
v
a(T,p) = L&D |
¥(T)
we see from formula {C-1)that
dr
E’i‘- >0 ifand only if r >1-Q(T, P).

We show, by contradiction, that if p >0, and T> 0 (which impiies 1~ Q(T,p) is
positive and decreasing with T), then dr/d T<0. Let p >0 and assume that, for some
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dr

—— >0.

dr | T,

Then r,, >1-2(T,p) and, since this inequality will hold for all T>Tj, we have r > r,
for T > T,. It then follows from equation (C-1) that dr/dT-w as T-ww,since

lim e =
T FATH  ®

by I'hospital's rule. This implies r >1, a contradiction. Therefore,

(C-2)

d
p > 0andT >0 implies —< 0.
dT

In a similar fashion, if r< 0 when p>0 and T> 0, then dr/dT - w as T->w;
thus r <-1, in contradiction. Therefore,

p>0 and T> 0 implies r >0. (C-3)

By similar contradiction arguments,

dr
p < 0 and T> 0 implies r<0 and —= > 0, (C-4)

for, in this case, 1 -Q(T,p) is negative and increasing with T.

Now, by symmetry, r corresponding to T. equals r corresponding to -T;
thus | r| obtains it maximum at T=) and relations counterpart to (C-2), (C-3), and

(C-4) hold for T< 0.
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When T=0,
=Ll (3--2 gin-l
F(B) = i (1 — 8in p)
_ 1
F(AU B) =5
and
|
r—Tsm pP.
The conclusion now follows. oy
The bound on Irl given by Theorem C-3 is tabulated as follows:
it |p| = 0 1 .2 .3 .5 1.0
Then |r| < % sinllp] = o .06 .13 .19 .33 1.0

The final theorem again deals with a two-state process, this time obtained by
thresholding a step process rather than a Gaussian process. The result here is more
easily applied, since one finds that the autocerrelation of the two processes, the step
process and the success-failure process,are equal.

L i L B

[T RN

Theorem C-4. Let X be a step process, with 1/A a: the mean separation
between jumps. Let D be the two state (success-failure) pivcess formed by a grouping of
all values of X above a threshold T ir ) success, and all other values of X into failure. :
Then the autocorrelation function associated with these processes,ay and @ ) respect-
ively, are equal:

e

ax(s) = o (8) =e-As for 8 >0.
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where

p=Pr{X > T}

and

u(s) = Pr {X, > T and X, > T}.

Since X is a step process,

~(s) = ple” 8 + (1-e8) p],
-A
where e 8 is the probability of no jump in X during a separation s. Therefore,

anis) = ple™* + (1-e"*8) p) -p% _ -As
D P(1-p)

Now consider the autocorrelation associated with X. Let H, p, and 02 be the
distribution function, mean, and variance of X; (same for all t). Then

E{XXprs)} = [0 (228 +(1- ¢ ) x[_ ydH(y)] dH(
=[2 [x2e 28+ (1 -e™*8) xy] dH(x)

-A -
=e ° (o2+p2) +p2 (1678
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go that

E{(Xt-u) (Xt+s-ﬂ)} E{ths b - ”2 -As
axls) = ) = ) e

Thus, ox =0 - #H¥#i#
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